NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct print. Pages were microfilmed as received.

This reproduction is the best copy available

Adaptive Visual Representations for:
Autonomous Mobile Robots using:
Competitive Learning Algorithms:

A Thesis

Submitted to the

Faculty of Graduate Studies
in Partial Fulfillment

of the Requirements .

for the Degree of .

Doctor of Philosophy -

5 R e 88>

Dean K. McNelll

Department of Electrical
& Computer Engineering
« University of Manitoba

©1998 Dean K McNaill

i~

i Sl e
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wi
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre relérence
Our fle Notre nitérance
The author has granted a non- L’auteur a accordé umne licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-35045-2

Canadia

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

rENRN

COPYRIGHT PERMISSION PAGE

ADAPTIVE VISUAL REPRESENTATIONS FOR AUTOROMQUS MOBILE
ROBOTS USING COMPETITIVE LEARNING ALGORITHMS

BY

DEAN K. McNEILL

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Maniteba in partial fulfillment of the requirements of the degree
of

DOCTOR OF PHILOSOPHY

DEAR K. McREILL ©1998

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicam nor
extensive extracts from it may be printed or otherwise reproduced without the aathor's
written permission.

Abstract

his thesis examines issues surrounding the class of unsupervised artificial
T neural network learning algorithms known as compeutive learning. Four
vanations of competitive learning algorithms are presented and compared, both
theoretically and based on their relative performance in the solution of a number of
low and high dimensional input environments. In particular, the thesis discusses
efficacy of these algorithms in learning appropriate representations of visual
information in robots. Compansons of hard competitive learning (HCL) and soft
competitive leaming (SCL) in the low dimensional discrimination of Gaussian data
clusters showed that SCL consistently produces superior solutions. As well, the
tendency of HCL to become trapped in sub-optimal solutions was analysed and
found to be an inherent shortcoming of the winner-take-all nature of the algorithm.
It was also found that selection of an appropriate network size may be achieved
through the use of a simple pruning technique if a surplus of network units are
provided to begin training. Further investigations involving HCL, SCL, and both the
DeSieno and Krishnamurthy implementations of frequency sensitive competitive
leaming (FSCL) show that the latter (FSCL) produces the most consistently reliable
solutions to a number of learning tasks. This result was obtained as a consequence
of extensive testing involving a high dimensional data clustering problem. That
problem concerned the adaptive identification and classification of motion via an
array of optical sensors residing on an autonomous mobile robot. The selection and
arrangement of sensors used by this robot were derived from the vision system of

jumping spiders. Operation of an integer-only version of FSCL, on the actual robotic

hardware demonstrates the system’s ability to cluster some aspects of the motton
identification task. The inability to completely idenufy and generalize to novel input
patterns is attributed to deficiencies in the sensors used and is not an inherent
shortcoming of the algorithm. These deficiencies can be corrected through the use of
some preprocessing of the raw sensor readings. As well, during the course of this
study the winner-take-all activauons used by the frequency sensitive algonthms were
replaced with analog acuivations, resulting in significantly improved network

generalization.

Acknowledgements

I would like to express profound thanks to my advisor-in-all-things, Howard Card.
for his boundless scientific curiosity, wealth of inspirations, and great fnendship, all

of which were invaluable in the completion of this thesis.

As well, I'd like to express my appreciation to the examining committee for the

considerable time and effort spent reading and evaluating this work.

I would also like to thank the many other friends and colleagues who have made my

time at the University of Manitoba a most enjoyable and rewarding experience.

Lastly, and most certainly not least, [would like to thank my family for their support

and encouragement in all my endeavours, academic and otherwise.

Financial support for this work was received through the Natural Sciences and
Engineering Research Council of Canada (NSERC). and from Micronet, a Network ol
Centres of Excellence. Support in the form of computing resources was also provided

by the Canadian Microelectronics Corporation.

iv

Table of Contents

Listof Figures ittt it viii
Listof Tables. Xi
Chapter 1:Introduction 1-1
L1 Competitive Learning 1+

1.1.1 Standard or Hard Competitive Learning 1—+

1.1.2 Frequency Sensitive Competitive Leaming 1-7

1.1.3 Soft Competitive Learning 1-9

1.1.4 Kohonen Self-Organizing Feature Maps. 1-11
1.1.50bjective Functions. 1-12
Chapter 2: Artificial Neural Network Simulator 2-1
2.1 Structure and Design Considerations of the Claymore Simulator. 2-3
Chapter 3: Empirical Examination of CL e coe 31
3.1 Parametric Simuiations of Competitive Leaming 3-2

3.1.1 Examination of Complex Two-Dimensional Data

Distributions 3-9

3.1.2 Effect of Learning Rate on the Performance of Krishnamurthy

FSCL . . 3-14

3.2 Effects of Exponential Approximations on Learning Performance 3-15

3.3 Determining the Required Number of Network Unuts 3-18
Chapter 4: Hardware Systems Employing ANNs 4-1
4.1 Custom Neural Circurtry +-1
+2Arachnid Biology - +=3

4.3 Autonomous MobileRoboto +-7
+.3.1Robot Sensory System +10
+.3.20ptical SumulusBoard +14
Chapter 5: Simulations of CL for Robot Vision.............. 5-1
5.1 Identification of Stationary Position 5-2

5.1.1 Hard Competitive Learning 5-3

5.1.2 DeSieno Frequency Sensitive Competitive Leaming. 5-3

5.1.3 Krishnamurthy Frequency Sensitive Competitive Learning55

5.1.4Soft Competitive Learning 5-7

5.2 Identification of Object Motion in a Matched Sensory Environment 5-8

5.2.1 Hard Competitive Leamning 5-10

5.2.2 Krishnamurthy Frequency Sensitive Competitive Learning 5-10

5.2.3 DeSieno Frequency Sensitive Competitive Learning. 5-13

5.2.4 Soft Competitive Learning 5-14

5.3 ldentification of Motion in an Unmatched Sensory Environment. 5-16

5.3.1 Frequency Sensitive Competitive Leaming 5-17

5.3.2 DeSieno Frequency Sensitive Competitive Leaming. 5-18

5.3.3 Soft Competitive Learning. 5-19
Chapter 6: Experiments with the Physical Robot............ 6-1
6.1 Motion Detection with the Physical Robotic Sensor Geometry 6-1

6-6

6.1.1 Learning with a Madified Robotic Sensory System.

vi

6.2 Leaming in the Absence of Floating Point Computations. 67

6.3 Neural Leamning in Robouc Hardware 6-9
Chapter 7: Conclusions and FutureWork 7-1
71FutureWork i 7+
Referencesot R-1
Appendix A: Algorithm Source Code. A-1
A.2 Hard Competitive Learning A-1

A.2.1 HCL Header File (HCL.b). A-1

A.2.2 HCL Algorithm Code (HCL.¢) A-2

A.3 DeSieno Frequency Sensitive Competitive Learming A-6

A.3.1 FSCLp Header File (FSCID.h) A-6

A.3.2 FSCL, Algorithm Code (FSCLD.¢) A-7

A4 Knshnamurthy Frequency Sensitive Competitive Learming A-11

A4.1 FSCLi Header File (FSCLK.h) A-11

A.4.2 FSCL, Algorithm Code (FSCLK.c) A-12

A5 Soft Competitive Learning Souce Code A-17

A5.1 SCLHeader File (SCL.h) A-17

A.5.2 SCL Algorithm Code (SCLc) A-18
Chapter 2: Support Hardware and Source Code B-1
A.l Stepper Motor Controller L. B-1

ALl Circuit Diagram B-1

A.1.2 Stepper Controller Assembly Code. B-2

A.2 Light Board Controller. B

A2l Circuit Diagram B4

A.2.2 Light Board Assembly Code B—

vii

List of Figures

Figure 1: Generative model of a neural network. 1-2
Figure 2: Typical structure of a competitive learning network. 1-5

Figure 3: Possible data distribution showing complex clusters and two

weight vectors. 1-6
Figure 4: Screen capture of the Claymore ANN Simulator. 2-2
Figure 5: Organizational structure of the Claymore ANN simulator. 2-4

Figure 6: [nterface between Simulation Control Module and Algonthm

Figure 7: Mobile robot with two dimensional visual input.. 3-2
Figure 8: Two well separated Gaussian input clusters and the learned

weight vectors. 3-3
Figure 9: Dataset with four isolated Gaussian clusters and learned

clustercentres. 3-5
Figure 10: Dataset with four Gaussian clusters displaying slight overlap

and showing learned cluster centres. 3-6

Figure 11: Dataset with four gaussian clusters displaying significant

overlap and showing learned clustercentres. 3-6
Figure 12: Mean squared error vs time for the HCL algorithm. 3-7
Figure 13: Error vs time for the SCL algorithm. 3-7

Figure 14: Error versus time companson for HCL and SCL on the parually
overlapping Gaussian problem. 3-8

Figure 15: Weight trajectories for an HCL network. 3-9

viii

Figure 16: Weight trajectories for an SCL network.

Figure 1 7: Complex datatset and the resulting HCL and SCL solutions for a
lOumnetwork.

Figure 18: Complex dataset and the resulting FSCL, and FSCLy solutions
fora lOunits network.l

Figure 19: Relative MSE performance of HCL, FSCL; and FSCL, on the
complex clustenngtask.,

Figure 20: FSCL solution 1o a2 complex data distribution containing both

Gaussian and untform random data distributions.

Figure 21: Error performance versus epoch for a FSCL network trained
on a complex data distribution. o oo

Figure 22: MSE versus ume for a FSCLy network learning a complex dataset

using various learning rates..

Figure 23: Clustering of four gaussians using three units..

Figure 24: Jumping spider indigenous to Manitoba.

Figure 25: Frontal eye arrangement of a local jumping spider showing the

large AM and smaller AL eyes.

Figure 26: Visual field of the jumping spider.!

Figure 27: Profile view of second generation LEGO® robot.
N

Figure 28: Stepper motor winding arrangement.

Figure 29: Stepper motor control circuit..

Figure 30: Sensor characterization apparatus.

Figure 31: OP805 Phototransistor response vs. angle to source.

Figure 32: L14Cl Phototransistor response vs. angle to source.
Figure 33: Photoresistor response vs. angle to source.

Figure 34: Robot sensor arrangement.

Figure 35: Lightboard..

Figure 36: Simple sensor and excitation geometry..

Figure 37: Activations of the FSCLy network with a local and distnbuted
representation of the same inputvector.

Figure 38: Light transition diagram.

3-10

3-10

3-12

. 3-13

3-14

3-15

3-16
3-19

.47

4-11
+-11
+=-12
+-13

.. 58

Figure 39: Diagram showing light motion transitions used in tesing network
generalization.. L L o .59
Figure 40: Hinton diagram of FSCLy network weights following training on
the motion detectiontask.o 5-11

Figure +1: Relative MSE* performance of the four learning algonthms with

a well matched sensor geometry. 3-16
Figure +2: Unmatched sensor and excitation geometry. B ¥4
Figure 43: Robot style sensor arrangement. 61
Figure 44: Side view of sensor-light board geometry and fields-of-view. 6-2

Figure 45: Generalization properties determined as percent of novel patterns
correctly represented. (*Best possible algorithm sewings.). 6-5
Figure +6: Relative MSE performance versus leaming time for a FSCL,
network trained on the various motion detection tasks.. 6-7

Figure 47: Training of the roboticsystem. 6-10

List of Tables

Table 1: Relative training times of HCL and SCL expressed in epochs. 3-5
Table 2: Number of correct solutions learned for different sized look-up

tables. 3-17
Table 3: Response from the Knshnamurthy FSCL network employing analog

acuvations.., e
Table 4: Typical activations from the SCL network for the nine vector test

dataset. 5-8
Table 5: Activations of a FSCLy network in response to horizontal and

vertical motion patterns. L. 5-11
Table 6: Activations of a FSCLi network in response to diagonal motion

PALLEINIS.. e 5-12
Table 7: Activations of a FSCL, network in response to stationary excitation

PALlEIMIS.. 5-13
Table 8: Activations of a SCL network in response to horizontal and vertical

MOION PALLETNS. oottt .. 5=15
Table 9: Activations of a SCL network in response to stationary excitation

PALLEIMS.. e 5-15
Table 10: Activations of a FSCL network in response to stationary excitation

using an unmatched sensor geometry. 5-18
Table 11: Activations of a SCL network in response to hornizontal and vertical

mMOtioN Patlerms. 5-19

Xi

Table 12: Response from the FSCL, network in the classification of positional
patterns using the robot based sensory and light board arrangements.. . . 6-3
Table 13: Activations of FSCL, nretwork 1n response to motion patterns.. 6—+
Table L+: Activations produced by an FSCLg network employing integer
COMPULALIONS.. 69
Table 15: Activations produced by an FSCLi network employing integer

computations and using true robotic sensory values. 6—12

xii

Introduction

rtificial Neural Networks (ANNs) have been employed to significant advantage
A.m a vanety of signal and information processing applications. They are
particularly useful in situations where a straightforward deterministic algorithm for
the mapping of system inputs to outputs is not available, or where such a mapping
is too complex to be coded effectively using traditional techniques. Examples of such
applications include handwritten character and digit recognition,'-# real-time
navigation of autonomous vehicles.!? weapons detection in airline baggage,*3! sonar
target identification,'®78! malignant cell recognition, and prediction of stock
market trends.>! These problems are difficult to solve because one can not easily
identify the underlying properties of the problem space which are required for the
formulation of an analytical solution. However, it is generally easy to provide
examples that are representative of the task required. Paradoxically, these types of
tasks are frequently the kinds which humans possess a natural ability to solve. in
spite of our inability to describe the mechanism leading to that solution. The strength
of the ANN approach stems from the network’s ability to evolve an appropriate
output response based solely on the available examples (training data) and a simple
learning rule. It accomplishes this by extracting relevant high-level charactenstics
from the training data, which are then used to formulate the output responses. What
is particularly powerful about this parametric representation is the network’s ability
to apply this acquired higher-ievel knowledge to input data which 1t has not

previously encountered during the training process. This property, which is known

1-1

INTRODUCTION

as the network’s ability to generalize, results in a very robust system, which is a

critical requirement for the successful solution of the above problems.

While there are a growing variety of neural network algorithms to choose from, they
can all be separated into two major categories; supervised learning and unsupervised
learning. In the case of supervised learning, the data used to train the network
consists not only of the input data (x), but also an assoctated desired network
response or target output (t).! Through the learning rule the network adjusts its free
paramelers, the network weights (w), in an attempt to produce the desired input-
response association. Once training is complete the neural system is theoretically
able to emulate the behaviour of the actual system which originally generated the
outputs (t) from the inputs (x). Figure 1 gives a block diagram representation of this
arrangement. The true measure of the quality of the resulting neural model is how
faithfully it predicts the response of the original system for values of the inputs which
were not part of the training data. [f the ANN performs well in this regard it may then
be used as a reasonable substitute for the original system, such as a human being.
One example of where such a network has been used very successfully is in the
automated sorting of mail by reading the handwritten postal codes on envelopes.'"!
The Backpropagation learning algorithm'” was used in this application and is the

most common and widely studied example of supervised learmning.

Actual System

ANN System
-
—— w

Figure 1: Generative model of a neural network.

L.

Vector quantities are printed in bold type. while scalar quanuties are printed in plain type.

INTRODUCTION

While supervised algorithms are quite powerful, they can only be used in situations
where one is able to assemble a set of training data showing the desired input-target
associations. Yet, in many cases it is not known 1n advance what these associations
should be, or frequently even how many network nodes are required to best
represent the data. In spite of these handicaps there exists an underlying structure to
the data which, if discovered. can be used to formulate a model of the system that
produced it. Unsupervised learning algorithms are capabie of doing exactly that.
They attempt to evolve a high-level representation by idenufying global staustical
properties of the data distribution. These properties generally manifest themselves as
clusters or groupings of data points in the input space and as a result the algorithms
are sometimes referred to as clustening algorithms. Once identified, these higher level
features may be used directly or may serve as inputs to additional processing stages.
This thesis examines a particular class of unsupervised learning algorithms known as
competitive learning. The task of these algorithms is to compress a complex, possibly
high dimensional, sensory space into a simpler representation consisting of a limited

set of system states.

The central problem explored in this thesis is the unsupervised leamning of efficient
representations of visual environments encountered by simple mobile robots. The
results are also believed to be relevant to other portable embedded computing
applications. A variety of competitive learning algorithms are investigated and
compared for their suitability in this task. Several modifications to some of these
algorithms were made in order to improve their performance or reduce their
computational complexity. However, the pnmary contnbution of this thesis was not
in improving these algorithms but in evaluating their usefulness in these
applications. This process was guided by reference to the vision system of a simple
animal, in an effort 1o exploit the extensive experimentation which has already been
performed by biological evolution. The vision system of a jumping spider was chosen
for its appropriate input dimensionality, quality of visual sensors, and estimated

computational capacity.

It is generally believed that most of the computational burden in vision is associated

with properly representing the data, rather than classifying it for behavioural

1-3

INTRODUCTION
Compentive Learning

responses. The raw visual data obtained via the robot’s sensory apparatus s an
impoverished representation of the visual scene. A mulutude of raw sensory vectors
actually correspond to the same environmental situation, with their differences
resulting from simple shifts in the image, time delays, or intensity variations for
example. The task of the unsupervised learning is 1o cluster similar situations into
the same system state in the new feature space. These learned states of the system are
known as visual representations, and are a prerequisite to any subsequent supervised
learning. Based on this dimensionally reduced representation the mobile robot then

performs a variety of stereotyped behaviours in association with each state.

As a result of their importance to the vision task, adaptive visual representations
obtained without superviston using artificial neural learning became the central focus

of this thesis.

1.1 Competitive Learning

1.1

As the name would suggest, competitive learning (CL) networks drive the learning
process by employing some form of competition between the various units within the
network. There are 2 number of variations of competitive learning with the most
notable being standard or hard competitive learning (HCL), soft competitive learning
(SCL). frequency sensitive competitive learning (FSCL), and self organizing feature
maps (SOFM). While all of these methods are closely related, there are some
important differences which affect the way in which these algorithms extract
information from the input data and how that information is used to guide the

learning process.

Standard or Hard Competitive Learning

The most basic type of competitive learning is standard or hard competitive
learning.''98! It attempts to motivate the learning process by enforcing strict
competition between units in the network. Figure 2 illustrates the typical structure
of an HCL network. The actual training of the network is a relatively straightforward
process. For each input data pattern (x), each unit computes the distance (h,)
between that pattern and the unit's weight vector (w,). A variety of distance metrics

may be used here, including the Euclidean distance. Minkowski metric, and

14

INTRODUCTION

Competitive Learming o

Mahalanobis distance.!'* For the purpose of this discussion we will use the simple

Euclidean distance as given in Equation 1.
b= w4 M

The unit with the smallest h, is designated as the winning unit (i*} for that particular
input vector and sets 1ts output (activation)} high (1). All the other units which lost
the competition set their activations low (either 0 or —1). The winning unit then
updates its werghts in order to reinforce the association between itself and the input
pattern. This i1s accomplished by adjusting the weight vector by a small amount in

the direction of the input pattern.

Aw,. , = E(x,-w,.) (2)

Since only the winning unit performs a weight update this learning method 1s
sometimes known as winner-take-all (WTA) learning. The symbol € in equation 2 1s
known as the learning rate and controls the magnitude of the weight adjustment. It
is fixed at 2 small value prior to the start of training and usually remains unchanged
through the entire learning procedure. The selection of € can have a significant
impact on the overall success of the learning process. If € is too large the network will
make large weight adjustments for each input pattern. Since the objective is to extract
global features, this places too much emphasis on any one pattern. Instead it is
desirable that only small weight changes be made, thus permitting the overall trend

in the data to emerge. A lesser problem is selecting too small a learning rate, resulting

Figure 2: Typical structure of a competitive leaming network.

INTRODUCTION
Compentive Learning

in very small weight changes and long learning times. A value on the order of

€=0.001 is typically used.

If one considers this entire process geometrically with the weights normalized to unut

iength such that
Zwuz = 1 (€))]

and the inputs normalized in a similar fashion, then both the inputs and outputs can
be represented as points on a unit hypersphere. The winning unit in any competition
will be the unit whose weight vector is closest to the current input vector. Under

these conditions minimization of the Euclidean distance is equivalent to maximizing

the inner product w, - x.

The greatest advantage of the HCL algorithm is its simplicity. It does, however, have
senous limitations under certain circumstances. It is common practice to begin the
training process by first initializing the network weights to random values. In some
situations this randomization will result in a unit being positioned well outside the
bounds of the input data distribution. Figure 3 illustrates such an initial distnbution

in a two dimensional data space. Clearly the unit at (0.5.0.5) is closer to all of the

14 ¥ B S T L T T v

ns |- : : .

12

0.8 | R

[IR
Jafdh,
ff'&:;
Yo
+ 1
*

00 | _ J

02 1 N 1 i A 1
02 0.0 0.2 04 o8 08 1.0 12 1.4

Figure 3: Possible data distribution showing complex clusters and two weight vectors.

1-6

1.1.2

INTRODUCTION
Compentive Learmnyg

data points and, as a result, will win the compeution for every point. Since only the
winning unit updates its weights the unit at (1.3,1.3) will never make a weight

adjustment. It will, therefore, never become a parucipating member of the network’s
solunion and is effectively orphaned. As a consequence the network will fail to leam
any useful discriminanion of the input patterns. Fortunately, several alternatives exist

which can address the orphaned unit problem.

Frequency Sensitive Competitive Learning

Frequency Sensitive Competitive Learning (FSCL) attempts to correct HCL's
shortcomings by introducing a conscience mechanism!!! into the compeution. This
mechanism has the effect of reducing the likelthood that a unit will win subsequent
competitions each time it wins the current competition. This eliminates the situation
where only one unit wins for a large majority of the training cases. Under this scheme
the unit closest to a particular data point will win initially, but eventually, due to the
conscience penalty, the unit on the pentphery of the data will later win and be moved
closer to the data. Eventually it will be drawn close enough to the data that it will
win a significant percentage of the time and will then contribute in a reasonable

manner to the solution.

The FSCL algorithm itself is simtlar to HCL in uts initial stages. As with HCL the FSCL
network first computes the Euclidean distance between the input and the weight
vectors and determines the winning unit. The activation of this unit is again set high,
and all others low.

v = Lif fw, x| <[w -x||vj=i
. C))

y; = 0 otherwise

However, unlike HCL the winning unit may not necessarily be the umit which
performs a weight update. The network first computes a bias (b) for all units using

the equation

b= (5-») 3

1-7

INTRODLUC TTON
Compentive Learming

Here N is the number of units participating in the compettion, and C is a bias factor
which determines the distance a losing unit must reach in order to enter the solution.
The value p, 1s a measure of the fraction of time the unit i wins a compeution, and

can be computed using the following equation.

ncw

P = p M+ By, - p™ (6)

where 0 < B << 1. The value of B determines how sensitive the conscience mechanism
1s to the winning of a single competition. As was the case with the learming rate, a
small B value should be selected in order to ensure that the overall statistics of the
data distribution are used to drive the competition. B should not be so large that any
single vector of the dataset unduly influences the competition. As a result of his

investigations, DeSieno!!!! recommends a B value of 0.0001.

The bias value b, is now used in the calculation of a new winning unit such that

= 1if (w,~xP-b)<(fw,-x|*-b)Vj=i -

z; = 0 otherwise

Having thus determined the winner under the influence of the conscience penalty,
the weights of that unit are updated according to equation 2. It should be noted that
the value z, is only used in determining which unit’s weights are to be updated. The

output activation of the units is still determined by equation 4.

A related variant of FSCL has been proposed by Krishnamurthy et al.132-3 [t isa
slightly simpler method which introduces the frequency dependence into the

distance computation by mean of a fainess function F(u,).
h; = F(u‘-)|wi—x| (8)

The fairness function is a non-decreasing function of u,, where u, is a count of the
number of times unit i has succeeded in winning a competition. A typical choice for
this function is F(u,) = u,. As before. the unit having the smallest distance h, is selected

as the winner i * and its weights are then updated according to equation 2.

1-8

1.13

INTRODUCTION

Compentive Learming o

Unfortunately, the property of FSCL which makes it useful in helping to ensure the
participation of all units is precisely the mechanism which introduces an addittonal
problem. Use of the algorithm will result in the units adjusting their weights such
that each untt wins an approximately equal proportion of the competitions.
However, one can easily visualize situations where some of the data ciusters are more
densely populated than others, which should ideally result in some units winning
more often 1n those clusters than in others. By requiring all units to win an
approximately equal number of competitions the network 1s discouraged from
assigning a single unit to a dense cluster, which would be the mosi appropnate
solution. So while FSCL is able to achieve better performance than HCL, it does not

always produce the best possible solution.

Soft Competitive Learning

An algorithm which corrects for HCL's orphaned unit problem, and also avoids the
uniform frequency restriction of FSCL, is soft competitive learning (SCL). SCL 1s
another varation on the basic HCL network, but with this algorithm there is no
single winner associated with a particular input vector. Instead all units compute an
activation based on their distance from the current input pattern, and learning
corresponds to an on-line version of the Expectation Maximization (EM)
algorithm.**! Radial basis function (RBF) units!!?8! are commonly used in SCL
networks instead of the linear units used in HCL and FSCL. Here the activation
function of the RBF unit is a normalized Gaussian and is calculated using the

following equation:

~jw, - x{*r2d’
= £ (C)]

ze'{“’. - ‘1[:/20.:

i

¥i

As seen previously, x represents the input pattern vector and w the network weights.
Here the weight vector w identifies the mean of the Gaussian activation function and
the parameter G, controls the variance or spread of the function. Both w and o, are
typically determined by the learning process. In the case of a symmetnc Gaussian, G,

is a diagonal matrix which can be decomposed to G, = ¢ I, where 1 is the identity

INTRODUCTION
(ompeative Learming

matnix, and ¢, are constants. Use of symmetric Gaussians 1s not strictly required and
in many cases a non-symmetric Gaussian may provide a better fit to the data. In those
situations ¢ becomes a full covanance matrix. This will obviously increase learning
time, since it introduces additional degrees of freedom which the network must now
explore in searching for a solution. A possible alternative to using the full covanance
matrix s to provide additional symmetric units to the network, thus allowing it to

cover an elliptical data cluster with several symmetric Gaussians, instead of a single

non-symmetnc function.

Special attention should be drawn to the fact that with SCL the activations are now
analog quantities. These analog outputs represent the degree of partial membership
which the input vector x has within the receptive fields of each unit. Or alternatively,
it identifies the extent to which each unit is responsible for the data point x. This
technique of encoding the input vector as an aggregation of the network’s anaiog
activations 1s known as a distributed representation. Thus the result of the SCL
algorithm is to find the optimal distributed representation of the input. This is in
contrast to standard competitive learning where a local representation is obtained 1n
which only a single unit 1s activated at one time for a given input vector. The weight
update equation for SCL is similar to that given for HCL in equation 2, with the

exception that all units perform weight updates in proportion to their activation.

Aw;; = EVi(x;~w;) (10)

As a consequence of this procedure, every unit learns for every input pattern but to
varying degrees in relation to that unit’s activation. Geometncally the units whose
weight vectors are closest to the input vector make the greatest move towards the
input, while those farther away move only slightly closer. This is opposite to the
weight updating used by HCL and FSCL (equation 2) which makes larger weight

updates when the winning units are farther from the input point.

Under the SCL scheme, no single unit can end up in the situation of monopolizing
the inputs at the expense of all other units. Every unit will eventually participate 1n

the solution even if its weights were initialized well outside the data distribution.

1-10

1.14

INTRODUCTION

Compentive Learming o

This process may take quite a long training time in some cases, but all the units are

guaranteed to eventually be used and not orphaned.

Kohaonen Self-Organizing Feature Maps

A fourth algorithm, which is related to CL, is the self-organizing feature map (SOFM)
developed by Kohonen.!"}!*! This algorithm is one of the first and probably the most
well known example of unsupervised learning. It has been widely studied in the
literature and an updated examination of the area has recently been made by
Kohonen.!'*! As a result, the present work will not investigate the properties of this
algorithm tn depth. However, the fact that SOFMs share some similanty to HCL and

SCL make them worth mentioning briefly.

The three CL algorithms discussed above place no special significance on the
ordering of the units. They are only interested in idenufying the features within the
data and are unconcerned with which units ultimately represent which features.
SOFMs, in contrast, attempt to evolve a topological representation of the input data
in an unsupervised manner. The units themselves are typically arranged in a two
dimenstonal map, though other arrangements are possible. The learning process
begins by once again determining the unit with the smallest Euclidean distance
between its weight vector and the input vector, and this unit is selected as the winner.
However, unlike HCL and FSCL where only one unit is updated, the SOFM updates
both the winner and all those units in 2 local neighbourhood of it. As learning
progresses the neighbourhood slowly shrinks until, in the end, only the winning unit
is being updated. This procedure ensures that all units achieve some degree of
adaptation, with the selection of the neighbourhooed function and its decay rate being
critical factors in ensuring that all units participate in the solution. The SOFM
process allows for entire regions of the map to become initally tuned to particular
inputs and this tuning is then gradually refined as the neighbourhood shrinks. In the
final solution logically adjacent inputs will activate neighbounng outputs, thus

indicating a topological correlation.

INTRODUCTION
Competitive Learming

1.1.5 Objective Functions
In all learning aigorithms there exists an objective function which dnives the learning.
In the case of HCL, FSCL,, and FSCL, the objective is the mimimization of the
squared-error between the weight vectors and a data vectors. This expression is given

in equation 11, where j varies over the number of units in the network layer (N).

Error = zlx-w,ll (1)
I

This error is summed over all inputs (x) for which the unit 1s considered the winner.
Thus the lower the total distortion between the inputs and weight vectors, the better

the performance of the network.

The objective function used by SCL is quite different than the other algorithms owing
to the probabilistic nature of the RBF units. This network stnves to maximize the
probability that the units are responsible for generating the input data values. As will
be demonstrated in chapter 3, this may result in markedly different placement of the
weight vectors. The error measure used here is given in equation 12. Here k varies
over the number of patterns in the training set (P), and N is the number of units in a

layer.

Ze-qw, -d’/20"
Ermror = -z Inf 2 (12)

93

N/2
k| NP(2ro?)

1-12

Artificial Neural Network Simulator 2

oftware simulation is the primary method used in the study of neural network
Salgonthms and their applications. The preliminary expennments conducted in
this thesis were performed using the Xenon artificial neural network simulator
developed by the Artificial Intelligence Laboratory at the University of Toronto. That
simulator was produced in the early 1990s pnmarily for that group’s own research
activities, but it was also made available to the general neural network community.
Due mainly to the high amount of computation required in simulating complicated
algorithms, this software was only available for the UNIX computing environment.
As a consequence of the evolution and upgrading of the UNIX system used in our
laboratory, Xerion became nonfunctional during the early stages of this study. At that
same time, support and development of the simulator were discontinued at the

University of Toronto.

As a replacement for Xerion, this author has written a new, custom designed, neural
simulator and it is that simulator which was used to obtain the results reported in
this thesis. This simulator, which we have named Claymore, was implemented in C
on a Macintosh® and provides a full graphical user interface for convenience of
visualization and ease of operation. In addition to the HCL and SCL algorithms which
were available in Xerion, the new simulator also includes an implementation of both

the DeSieno and Krishnamurthy versions of FSCL.

ARTIFICIAL NEURAL NETWORK SIMULATOR

3 Rl fat Construction Simuistion Windews Halp 1247 @ 2 Caymore

Paramaters ~erwark

| Frequency Sensitive CL (Krish)
|

! Learming Rate (epsiion) - C 001000
| Fatrness Factar = 1 000000
I

I
:‘Em =100
{Error - 0 007096

i
i
b

Dataser
‘l:]ﬂolmnl train
TP Hoton3-24 est
:Jt10tion3g est
ITJtotienss cast

.F — —— -

Carrent lapst Yec'sr

S l[:l_l:I:IlIIllllll T

Figure 4: Screen capture of the Claymore ANN Simulator.

Figure 4 shows the graphical user interface for the Claymore simulator. The upper
right window displays Hinton diagrams of the unit activations. These diagrams
represent the magnitude of the activations by the size of the shaded arez and the sign
by its colour. Posittve activations are shown in blue, while negative values are shown
in red (not visible in this figure). In the case of this figure, a twelve input, eight
output network is being simulated. The lower right window displays the
corresponding weight vectors, again using Hinton diagrams. This graphical
representation allows the user to easily observe the status of the network while
training by visually monitoring changes to the weights. The user also has the option
in both of these windows of selecting any element of the diagrams in order to view
the actual floating point activation or weight value of that element. As can be seen tn

the figure, the particular weight element selected has a value of 0.740789.

2-2

ARTIFICIAL NEURAL NETWORK SIMULATOR
Structure and Design Consideranons of the Cluymore Simulator

The windows on the left provide feedback about the state of training and the
selection of training set and test pattern. The upper left window is a status window
and displays any algorithm specific parameters, such as learning rate. In additton, it
shows the number of epochs simulated, and the network error resulting from that

training.

The centre left window 1s the dataset window. It allows the user to select which
datasets are to be used for training the network and which are for testing. The black
selection indicator to the left of the dataset name permits the user to choose which
of the datasets to use for network testing. The black selection indicator to the right
of the dataset name, permits the user to select which dataset to use for training.
Finally, the bottom left window is the test vector selection window. It permits the
user to easily cycle through the test dataset (selected in the dataset window above)
and to observe the resulting output activations in the network window. Patterns can
be presented sequentially by using the arrow buttons, or ar arbitrary pattern can be
chosen with the slider control. Some basic attributes of the dataset are also shown at

the top of this window.

Network construction and simulation controls are available through the
corresponding menus. These provide options to add and connect layers, modify the
algorithm specific parameters, randomize network weights, and perform training.
Weight values can be saved and restored at any time through the File menu. As well,

the loading of dataset files is also available under that menu.

2.1 Structure and Design Considerations of the Claymore Simulator

The overall design considerations for this software were extensibility and ease of use.
The various program elements were organized to ensure that all user interaction with
the program was provided solely through the graphical user interface. No external
configuration files are required to set-up or simulate a network, thus making the

operation of the simulator very intuitive.

ARTIFICIAL NELRAL NETWORK SIMULATOR
Structure and Design Consideranons of the Claymore Simulator

USER

HCL | | FSCL, | | FSCL.| | SCL

Figure 5: Organizationul structure of the Claymore ANN simulator.

Just as important as the user interface was the requirement that the simulator be
constructed in such a way as to allow for easy addition of new algorithms. Figure 5
shows a block diagram representation of the simulator. As can be seen from that
figure, all interactions with the user are performed through the GUI. It then passes
all simulation related requests to the simulation control module (SCM) which
provides all general algorithm independent simulation functions. When it becomes
necessary for an algorithm dependent operation to be performed the SCM calls the
corresponding interface function in the algorithm module. Each of the algorithm
modules is constructed in the same way and provide the same basic operations to the
SCM. The diagram of figure 6 illustrates the interaction between these two moduies.
Any algorithm specific data structures for the network, layers, neurons, or synapses
are allocated and initialized by the aigorithm module in response to calls from the
SCM (which performs initialization of the common parameters such as learning rate).
Training and testing of the network is performed by calling the interface funcuons
Do Epoch and Apply Vector. These then in turn call any other functions internal to the

module in order to accomplish the request, such as updating weights and activations.

Strict adherence to this programming model allows new algorithms to be

incorporated very quickly. Algorithm models of average complexity can be included

2-4

a
[
ARTIFICIAL NEURAL NETWORK SIMULATOR :
Structure und Design Considerations of the Claymore Stmulator o

Simulation Control Module Algorithm Module (SCL)

L [nit Network Data

> Init Layer Data
= Init Neuron Data
t= Init Synapse Data

= DO EpOCh
E Compute Sums

Update Activations
Update Weights
= Apply Vector

Compute Sums
Update Activations

Figure 6: interface between Simulation Control Module and Algorithm Modules.

in only a few hours. Source code for the four competitive learning algonthms

programmed for this thesis are provided in Appendix A.

2-5

Empirical Examination of CL 3

he four variations of competitive learning introduced in chapter 1 are not new
Talgori[hms. They have all existed in the neural network literature for some
time. However there has yet to be a detailed investigation conducted into the relative
performance of these algorithms. The most complete examination reported to date
was conducted by Krishnamurthy et al.!¥ This involved a companson of their
implementation of FSCL to both HCL and SOFM. The work presented in this and
subsequent chapters will extend this investigation to include SCL and the DeSieno
variation of FSCL. It is hoped that the results of this analysis will provide a clearer
understanding of the relative operation and performance of competitive learning
algorithms. That knowledge will permit the intelligent application of competitive
learning by providing us with a better appreciation for the class of problems which
these algorithms are capable of solving and under what conditions deficiencies in the
algorithms may impede their operation. With that in mind, we will first examine the
performance of the algorithms on abstract low-dimensional problems, such as those
which might be experienced by the robotic system of figure 7. This robot was the first
constructed during this thesis and employed two analog optical sensors (or eyes)
corresponding to a two dimensional input environment. In later chapters these
investigations will be expanded to encompass a more complicated hardware based

application operating in higher dimensional input spaces.

3-1

L]
-
EMPIRICAL EXAMINATION OF CL :
Parametnc Simulutions of Compentive Learming o

Figure 7: Mobile robot with two dimensional visual input.

3.1 Parametric Simulations of Competitive Learning

G s s ecssacEus e R e AR EESEee R sEEEEEREER AT AaRece BB OES
The investigation began with the development of a number of idealized test cases
which permit examination of the algorithms under carefully controlled conditions
and in situations where the solutions may be easily visualized and evaluated. These
cases will be used to determine not only whether the neural algorithm is capable of
reaching an acceptable solution. but also how quickly it converges to that solution

and what difficulties it encounters along the way.

The test cases themselves consist of Gaussian distributions of data points 1n a two
dimensional input space. In terms of the robot, these Gaussians correspond to similar
visual scenes which provide comparable optical intensities measured by the two
detectors. Since the test data has been artificially generated it possesses well known
properties, allowing for precise evaluation of the network’s performance. The
following description will detail the results of simulations conducted on the datasets

using the HCL and SCL algorithms.

The investigation first considered the case of simple geometrical data distributions
which are well separated in the input space (corresponding to clusters of similar

visual scenes, well separated from other distinct scenes). Of interest 1s the way the

3-2

EMPIRICAL EXAMINATION OF CL

Parumetnc Simulations of Compenuise Learning o

receptive fields (prototypes) onent themselves in relation to the data they are
attempuing to represent. First we consider the very simple case of two physically
disjoint Gaussian clusters placed at opposite sides of the input space. A network with
two output units was then simulated using these input patterns and it was found that
both the SCL and HCL networks were able to learn this problem from a limited
number of data points such that one unit was centred in each of the two input
clusters. Figure 8 shows the input distribution and the learned location of the
prototype centres (w). The SCL network used symmetrical Gaussian activation
functions and for the purpose of these simulations the variance of these Gaussians
was fixed at 62=0.0044 to match the spread of the data clusters, though this
parameter could also be learmed. The networks were trained using a dataset of 1000
patterns drawn from the two gaussian distnibutions with each gaussian producing
half of the patterns. These input vectors were stored in the training file in random
order to avoid any potential systemic effects which may arise from a sequenual
ordering. The network weights were initially set to random values also drawn from a
Gaussian distribution centred at 0.5 with a standard deviation of 0.1. The results
from this experiment showed that HCL performed slightly better on this problem

than SCL, reaching a stable solution in only 4 passes through the training data

1.4 T T T — T T T
Weghts o

12 -

10 - i -
08 -¢ -

¥ 068

0.4 b , - - . . : H - E
02 : 4
00 v .- . - , , - .
PO S S SR R

02 0.0 02 04 06 o8 10 12 1.4
n

Figure 8: Two well separated Gaussian input dusters and the learned weight vectors.

3-3

EMPIRICAL EXAMINATION OF CL
Parametnc Simulations of Compenuve Learmng

{(epochs). SCL reached an initial solution in 5 epochs and then refined that solution

for an additional 5 epochs. A learning rate of £=0.001 was used by both networks.

For this expenment the weights began in the centre of the input space and moved
quickly to the centres of the data clusters. However, 1n some situations the weights
may be initially positioned in a region well away from the data values. If this occurs,
a different learning behaviour is observed. With the HCL algerithm whichever of the
two prototypes s closest to the input data will win the competitions and move
towards them, taking up a position in the centre of all the data points. The other unut,
being much farther away from the data, will lose every competition and the learning
will end up stuck in a non-optimai solution. The second unit is orphaned and its
presence is essentially irrelevant. With the SCL network, one initially notices a
similar type of behaviour, but because all units update their weights in proportion to
their activations the second unit still makes very small movements towards the data.
Following several epochs it will eventually be drawn into the middie of the
distribution. Once this occurs the units then diverge to cover the two separate data
clusters as before. This result clearly shows an advantage to using the SCL method,
though the number of epochs required to reach the final solution will be very large.
For the simulations conducted, it was not uncommon for SCL to require 18000
epochs to converge. This long training time is a direct consequence of the very small
weight adjustments dictated by equation 9. The small adjustments are to be expected
since the peripheral unit’s activation is almost zero and hence Aw will also be near
zero. One possible method to expedite this process would be to enforce a minimum
weight update and thus allow distant units to make small but more substanual

adjustments during each epoch. Such a scheme has yet to be evaluated in practice.

Data distributions with well separated Gaussians are very easy to solve since 1t 1s
obvious, both to the network and 2 human observer, that there are two distinct
clusters in the data. This is not the case for somewhat more complicated distributions
of overlapping Gaussians. Obviously, the higher the degree of overlap between two
clusters the more difficult it will be to distinguish them from each other. To analyse
this situation additional simulaticns were conducted on several data distributions

containing four Gaussians with varying degrees of overlap between two of the four

34

EMPIRICAL EXAMINATION OF CL
Purametnc Simulutions of Compentive Learming o

clusters. Figures 9—11 show these distributions. [t was found that both SCL and HCL
were able 1o identify the four clusters but that the convergence umes increased with
the degree of overlap. Training times on these three datasets and the previous two

gaussian dataset are summarized in table 1 below.

Table 1: Relative training times of HCL and SCL expressed in epochs.

Figures 12 and 13 show the relative convergence times of these algorithms on the
initial two Gaussian problem and the four Gaussian problems. As can be seen, SCL

was found to converge significantly faster than HCL in the presence of overlap. This

14 T T Y A 3 \J ~ T
Weghts
12
10 b .- . 4
: ;7‘/;'.:' .
08 + ‘e Jj"ﬁ:’ .. .
"'-'f:'.'"
A}
N 06
os | . . : . : . . g
Q‘:f;;ﬂ N
02 . . %---: J
CORE
a0
_0‘2 ' s i J L 'l o

02 0.0 a2 04 +1.} 08 10 12 14

Figure 9: Dataset with four isolated Gaussian dusters and
leamed cluster centres.

3-5

[]
[]
EMPIRICAL EXAMINATION OF CL |
Purametnc Sumulanons of Compeative Learming o

14 v T v Y T I S
Weghts »

12 - - . . - - <
10 -- 4
08
S 06 . 3 p
“*r .o 1
3 :

_02 A L 'l L L L

Fgure 10: Dataset with four Gaussian clusters displaying slight
aoverlap and showing learned cluster centres.

04 - H +

Q2

00

0.2 0.0 02 04 06 0.8 10 12 14

Figure 11: Dataset with four gaussian dusters displaying significant
overiap and showing learned cluster centres.

EMPIRICAL EXAMINATION OF CL

-
-
[]
-
Parametnc Simulations of Compeaave Learning 4

2000 2 r —r v v
i Gausgl —
: Gausg2 —
Gauss4 (1.0) —
150.0 - - b
w
[}
§ 100.0 - . -
g
L J
50.0
00 L . L M " 2
0.0 50 10.0 150 200 250 30.0 35.0
me (spochs)

Figure 12: Mean squared error vs time for the HCL algorithm.

enor

25000.0 T T T T
L : Gauss! —
1 Gauss? ——
4 Gauss3
200000 | - - 4
oo) - A i
0.0 S.0 10.0 150 200 250
tme (epochs)

Figure 13: Error vs time for the SCL algorithm.

3-7

EMPIRICAL EXAMINATION OF CL

Parametric Simulations of Compennve Learning o

1500

100.0

orror (MSE*)

“00 50 100 150 200 250 300 350
time (epochs)

Figure 14: Error versus time comparison for HCL and SCL on
the partially overiapping Gaussian problem.

behaviour is more clearly demonstrated in figure 14, which shows the relative
training times of HCL and SCL on the “Gauss 3" problem corresponding to figure 10.
Here the error values produced by the SCL network are converted into an equivalent
mean-squared-error based on the known properties of the data distribution. It
should be noted that while SCL provides better performance than HCL. it does so at
the expense of additional computation. For the two input, four output network

examined here, SCL required approximately five times more computation than HCL.

[n most training trials SCL was able to correctly identify the presence of four clusters
in spite of the overlap. Yet, in a couple of attempts the network becomes trapped in
a non-optimal solution with the two overlapping clusters being covered by only a
single unic and the other two clusters being shared by the remaining three units.
Though this is not the best possible solution, it can not be considered a complete
failure either, since the network was still able to extract some useful information from
the data. In contrast, the sensitivity of HCL to its initial weight values makes it quite
susceptible to the orphaning of units, which produces solutions that do not represent

the data in 2n acceptable way. For example, the fourth curve in figure 12 shows the

3.1

EMPIRICAL EXAMINATION OF CL
Pyrametne Simulations of Compenave Learming

14 T L T L3 R L3 .
Ungt 1 o
12 Une 2 ;:
Ung 4 -
10
o8 b - .
N 08 - -
-
x
04 x’l =
.4 Wi
.. . b =4
02 s~ 5
o 2
00| - -) - - E
02 L N s i : M —
0.2 00 02 04 [+X.} [¢X.] 10 12 14

Figure 15: Weight trajectories for an HCL network.

high mean-squared-error resulting from poor initialization of the HCL network’s
weights. In this case the weights were initialized around 1.0, instead of 0.5 as was
done in previous experiments. The result is a mean-squared-error of 119 which
clearly indicates the poor quality of the resulting solution. The plots of figures 15 and
16 demonstrate typical weight trajectories through the data space for a successfully

trained HCL and SCL network.

Examination of Complex Two-Dimensional Data Distributions

While the previous four examples illustrate the general behaviour and relative
performance of the algonthms, one would not consider these discnmination tasks to
be particularly challenging. To better gauge the operation of the algorithms on more
difficult tasks 2 more complicated dataset was constructed. This dataset consisted of
five Gaussian clusters with varying degrees of overlap and density, and is shown in
figure 17. Each of the four clusters to the right of the figure contain 500 elements,
while the larger cluster on the left contains 2000. This dataset was presented to a two

input, ten output network with initial weight values randomized around 0.5. As

3-9

EMPIRICAL EXAMINATION OF CL
Parametnic Simulanions of Compeanve Learning o

‘4 L LE v L L L T
Ung 1 o—
o . . Une2 -»--
12 - ¢ Unt3 o 7
Ung 4 —
10 H . ;
08 b B
~ 06
0.4 - -
02 - E
0.0
‘02 L - L 'l A A A

0.2 0.0 02 0.4 06 [X] 1.0 12 14

Figure 16: Weight trajectories for an SCL network.

o8

2

08

o4

02

00

_02 A A L L 'l 1
0.2 00 a2 04 08 0.8 10 t2 14

Figure 17: Complex datatset and the resulting HCL and
SCL solutions for a 10 unit network.

3-10

EMPIRICAL EXAMINATION OF CL
Parametnc Simulations of Compeative Learning

before, a learning rate of £=0.001 was used. The resulting solutions produced by

both HCL and SCL are also shown in the same figure.

In examining the solutions one observes that the HCL algonthm distnbutes its units
in such a way as to cover the data in a roughly uniform fashion. Note that the large
cluster on the left contains no more unitts than the smaller cluster immediately
adjacent to 1it, demonstrating that HCL places no significance on the density of data
points (as one would expect). However, the solution produced by SCL s quite
different. This algorithm places two units at the centre of each of the five clusters.
This difference in solutions is a direct resuit of the differing objective functions being
used by the two networks. HCL is attempting to locate the best solution by
minimizing the mean-squared-error between its weight vectors and the data vectors.
which it can accomplish by spreading the units throughout the data, as shown. SCL,
in contrast, is attempting to maximize the probability that its radial-basts-function
units are responsible for producing the data values. Placing its units tn the manner
used by HCL would not accomplish this. Instead the optimal solution under this
criterion is to locate the unit centres exactly in the centre of the individual data
clusters. This is true even if the result is the coincident placement of units, as was
found in this example. Again, it should be noted that this algorithm also places no

significance on the density of the data clusters.

In addition to the HCL and SCL algorithms, this dataset was also tested using the
Krishnamurthy and DeSieno versions of FSCL. The resulting solutions achieved by
these two algorithms are presented in figure 18. It can clearly be seen that both
techniques are distributing their units according to the density of the data. The
placement of units for the four low density clusters is relatively equivalent. Where
the solutions differ markedly is in the placement of units within the high-density
cluster. While both algorithms use four units to represent this cluster, FSCl, places
its units at the centre of the data, while FSCLy distributes them evenly around the
cluster. This difference is a direct consequence of the way in which the two networks
use the frequency component in determining a solution. For FSCL;, the {requency

based bias term (equation 5) strongly influences the selection of a winning unit when

3-11

EmMPIRICAL EXAMINATION OF CL
Parametric Simulations of Competinive Learming

os | - : .

_02 ' L 1 . L ' e
0.2 0.0 02 04 08 [X} 1.0 12 14

n

Fgure 18: Complex dataset and the resulting FSCLy and
FSCLp solutions for a 10 units network.

the units are winning a disproportionate number of times. However, once weights
have been adjusted in such a way as to result in uniform winning proportions for all
units, the bias term no longer dominates the learning and the simple Euclidean
distance is used. Under this condition the units can minimize this distance only by

moving to the middle of the data cluster.

In contrast, FSCL¢ maintains the frequency dependent aspect of the training
throughout the entire learning process. As a result, the four units in the dense cluster
spread out uniformly in order to assume responsibility for an equal proportion of
these data points. This is clearly the superior solution since it makes the best use of
all units. To confirm this conclusion, the relative mean-squared-error of HCL,
FSCLy, and FSCLg was recorded during the training process. and the resulting plot
is shown in figure 19. The two FSCL,, curves represent the solutions achieved by this
algorithm using a bias factor of C=1.0 and C=10.0 respectively. As is quite evident
from those two results, the performance of FSCL;, is strongly dependent on the

choice of bias factor.

3-12

EMPIRICAL EXAMINATION OF CL

Purametnc Simulations of Competave Learning o

2000 (——t——7———— ——
HOL —
DFSCL1 -
DFSCL2 —
1500 b+ - - - . - . -4
i
1
z
ng.o
g
[J

go L il I l A 'l L A L
00 50 100 150 200 250 300 350 400 450 500
tme (epochs)

Figure 19: Relative MSE performance of HCL, FSCLy and
FSCLy on the complex clustering task.

Since FSCL, produced such an effective solution when confronted with this complex
data distribution, we decided to test its abtlity to solve a second, more challenging
problem. This new dataset, shown in figure 20, contains three Gaussians of varying
size and density, along with an overlapping rectangular region of uniformly
distributed random points. The large Gaussian contains 3000 points, while the
medium and small Gaussians contain 1500 and 500 points respectively. The
rectangular regions in the lower right is made up of 2000 points, for a total of 7000
data points in the training set. Weights were again randomized around 0.5 at the start
of training and a learning rate of £=0.001 was used. A total of twenty units were
provided to the network and the final placement of the weight vectors is shown in

the figure.

As can be seen, FSCL once again produced a well structured solution by uniformly
positioning units based on the density of points. In spite of the complicated structure
the algorithm converges to a solution in less than 5 epochs. This convergence time

was largely unaffected by changing the random initial values of the weights. This is

3-13

3.12

EMPIRICAL EXAMINATION OF CL
Parametric Simulations of Compenive Learming

14 T T T T T T Y

06

04 P~

02

0.0 :

02 A 'l L ' - L L

0.2 0.0 Q.2 a4 1.} (X} 10 12 14

Figure 20: FSCLy solution to a complex data distribution containing
both Gaussian and uniform random data distributions.

demonstrated by error measurements of figure 21, resulting from initialization of the

network weights around 0.2, 0.4, and 0.6.

It should be noted that the solution produced by this network is not capable of
individually identifying the four onginal distributions from which the data was
constructed, since it has no additional information at its disposal on which to base
such a discnmination. However, that discrimination would be possible by em ploying
additional supervised learning, or by providing the algorithm with supplementary

parameters allowing the separation of these base distributions in a higher dimension.

Effect of Learning Rate on the Performance of Krishnamurthy FSCL

To this point a uniform learning rate of€=0.001 has been used for all algorithms and
simulations in order to permit fair comparison of the networks. The CL algorithms
other than FSCL will not generally tolerate large learning rates. However, we wished
to test the FSCLy technique in order to determine how susceptible its performance

was to the use ol these higher learning rates. To this end, the same network was again

3-14

EMPIRICAL EXAMINATION OF CL

L
L
[)
Effects of Exponental Approximations on Learming Performance :

;

orror (MSE)
g
)
i

1000

00 L 4 ; "
X+] 100 200 30.0 400 50.0

nme (epochs)

figure 21: Error performance versus epoch for a FSCLy
network trained on a complex data distribution.

simulated on the second complex data distribution with weights randomized at 0.5,
but the learning rate was changed from €=0.001t0 0.01, 0.1 and 1.0. The resulting
mean-squared-error performance versus time ts presented in figure 22. As this figure
demonstrates, the FSCL algorithm is capable of easily locating a stable solution for
learning rates up to £=0.1. However, in the case of €=1.0 the resulting weight
adjustments become so large that the network is unable to converge to a single stable
solution. It instead oscillates between many sub-optimal solutions. In spite of this, it
is evident that the already expedient learning observed with this algorithm can be
safely improved by using moderately larger learning rates than those employed in

earlier expenments.

3.2 Effects of Exponential Approximations on Learning Performance

The simulations performed earlier in this chapter show that SCL has a very definite
advantages over HCL, both in speed of convergence and quality of solution.
However, the arithmetic computations for SCL are more complicated. requiring the

evaluation of an exponential function in determining a unit’s activation. This

3-15

EMPIRICAL EXaMINATION OF CL
Effects of Exponential Approximations un Learmng Performange

100.0 T T T T T T T ¥
80.0
600 -
g
B '
s }
Lo
20
oo L o l Il I'. d '
00 20 40 60 80 100 120 40 160 180

bme (epochs)

Figure 22: MSE versus time for a FSCL, netwaork learning a
complex dataset using various leaming rates.

function is not available in the restricted mathematical repertoire found in most
embedded microcontroller applications. As an alternative in these situations it is
possible to replace the exponential with a look-up table approximation. However, it
is not clear to what degree the use of a look-up table will impact the ability of the
algorithm to reach a suitable solution. In order to answer this question, 2 number of
simulations were conducted using the same set of test cases described above, but
replacing the exponential function with look-up tables of vanous sizes. To help
improve the accuracy of the approximation, the function * = (1 + x) was used for
arguments in the range [0.-1) and a simple look-up table used for values in the range
[-1.-40). All arguments below —40 were considered to be equal to -40. The results

of these simulations are summarized in table 2.

3-16

EMPIRICAL EXAMINATION OF CL
Effects of Exponential Approximations on Learning Performance

Table 2: Number of correct solutions learned for different sized look-up tables.

Each of the test cases was simulated a total of five times with each size of look-up
table. For reference purposes the network’s performance using a true exponential 1s
also included in the table. The table values show the number of “correct™ solutions
discovered by the network in those five learning trials. A solution s considered
correct if the network was able to place a prototype at the centre of each of the input
clusters. From the table it is clear that larger table sizes provide better performance.
However, it should be noted that the network will occasionally get stuck in a sub-
optimal solution, independent of whether a true exponential or a look-up table is

used.

One other significant side effect of using a look-up table approximation is the
network’s inability to converge to a stable solution. In those situations the coarse
nature of the look-up table results in the network oscillating around the precise
solution. This occurred consistently for the 15 and 8 element look-up tables, but was
almost nonexistent for the smaller tables. As well, the effect was only evident on the
more difficult problems consisting of overlapping Gaussians. The reason for this
behaviour is quite clear. The learning algorithm is attempting to make small
refinements in the weights in order to move them closer to the centre of the clusters
and thereby reduce the network error. However, since there are only a limited
number of adjustment values available from the table, the network is unable to make
precisely the update it requires and overshoots the desired value. On the next epoch
it must then correct for this new error which again results in an overshoot. So the
weights end up oscillating back and forth around the true minimum. This effect

occurs mainly in the more difficult training situations because these are the cases

3-17

EMPIRICAL EXAMINATION OF CL
Determuning the Required Number of Network Units

which require the finest weight adjustments to ensure proper discrimination of the
clusters. Even though these oscillations do occur, they are relatively small and do not
have a significant effect on the quality of the solution. In tests with the very small

look-up tables there are so few values available that the network defaults to making

the smallest possible update and eventually reaches a stable solution.

3.3 Determining the Required Number of Network Units

"e s s esestess et N s I EscE T E T e E AR RERERBREENERBEEREF GBSO
As was discussed in chapter 1, unsupervised methods are ideally suited to situations
where the number of darta clusters is not known prior to training. The question then
anises: How does one know how many output units, and hence recepuive fields, to
provide in the network for a given problem? There is no easy answer to this question.
Up to this point most simulations have been using exactly the same number of units
as clusters in the data. An exception is figure 20, where an excess of units were
properly employed to represent the data following learning. But providing the
optimal number of units is only possitle if we know in advance how many clusters
exist and in many situations this information is simply not available. What is clear s
that providing the network with too few units will make it impossible to find the best
solution. However, it is not obvious what effect providing a surplus of units will have

in the general case.

In order to answer this question a few simple SCL simulations were conducted. These
involved the clustering of the four isolated Gaussians (figure 9) using either one too
many or one too few units. As expected, when the network 1s operating with one less
unit than is ideally required, the network will reach a solution in which one unit
takes a position between two clusters and attempts to represent both of them. The
other units position themselves as belore, in the centre of each of the remaining two
clusters. Figure 23 shows one such possible solution. For situations where an
additional unit is provided the network represents three of the clusters using three

of the units, and the two remaining units share responsibility for the fourth.

This behaviour appears to show that the network is capable of dealing in a reasonable

way with any extra or even deficient resources at its disposal. It suggests that if the

3-18

EMPIRICAL EXAMINATION OF CL
Determuming the Required Number of Network Units

14 T —_— T T Y T L2

as | iR

N 06 - . . . - . - <

04 | - : . . . _

02 S .

00

Fgure 23: Clustering of four gaussians using three units.

desired number of clusters is not known in advance it is best to provide the network
with a larger number of units and perhaps remove redundant units near the end of
training through pruning. This would ensure that the network has the necessary
resources to discover the true structure in the data, yet only retained the necessary
units once training was concluded. Of course, it should be noted that adding extra
units will not only retard the learning process, but may also result in the network
overfitting the data. As a consequence, the network will achieve better performance
on the training data, but poorer generalization. [n any case, there appears to be some

flexibility in the number of units one provides.

3-19

Hardware Systems Employing ANNs 4

aving examined the basic performance of competitive learning in the context
H of low dimensional input spaces, we would now like to extend these
investigations to more practical problems in higher dimensions. Many of the tasks
described in the introduction of chapter | would be suitable candidates, but of
particular interest to this author is the potential benefits of using neural technology
as a component in the control of mobile robotic systems. This application is made
even more interesting if the robotic systems are constructed from inexpensive, off-
the-shelf components. Under these conditions the neural algorithms are subject to
additional computational and energy consumption constraints which do not come
into play when one uses the algorithms on high-end workstations or in advanced

desktop computing environments.

Is it possible to construct systems which are capable of performing meaningful
adaptive signal processing tasks using inexpensive, off-the-shelf components? Are
the competitive learning algorithms capable of operating under such conditions?
What are the consequences of limued precision computations and limited memory
resources? It is these questions which we will attempt to answer in the remainder of

this thesis.

4.1 Custom Neural Circuitry

® ® § o 8 s ¢ 8 0§ @8 ¢ 8 W S E S S @S @ 6 F AN T ST S0 I EE S S E QT B 9 S 0 8 E P R EN QTS
A significant portion of the research conducted in our laboratory in recent years has

focused on the implementation of neural network algorithms in compact low-power

4-1

HARDWARE SYSTEMS EMPLOYING ANNS
Custom Neural Groutry

custom VLSI hardware.!'>-33 The bulk of this work has concentrated on custom
analog neural circuits, though pulse stream digital networks have also been
investigated in our laboratory.!1?%-2!! The main advantage to all these approaches 1s the
high synaptic density which can be achieved in comparison to traditional digtal
circuit implementations. As well, since each of the synapses is essentially a special
purpose processor, operating concurrently with all other synapses. there 1s a great
efficiency of computation. This allows for large effective computation rates using
farrly modest structures. Our analog neural circuitry has relied heavily on a CMOS
version of the wide-range Gilbert multiplier.?®! This analog multiplier 1s very
compact in comparison to an equivalent multiplier constructed using digitai

components, requiring as few as 19 transistors.

As a result of the long term work, a significant amount of experience has been
acquired with respect to the properties of the Gilbert multiplier and how it performs
both theoretically and in an actual circuit environment. Past studies have included a
detailed investigation into the various types of circuit and fabrication difficulties that
would be encountered as a result of implementing an analog system using these
multipliers. It was found through those investigations that the analog neural circuits
are quite robust and are capable of learning non-trivial tasks while enduring
significant fabrication and environmental limitations. Readers interested in a more

detailed description of these past results are referred to [15.23].

While the analog circuits have definite advantages in terms of integration density, the
technology 1s not presently available as commercial components. Analog ANNs are
still very much a topic of ongoing research. Presently, the only way to exploit this
technology is through the design of custom integrated circuits, which centainly
violates our requirement for inexpensive systems. In addition to the availability and
cost issues, analog neural circuits suffer from a problem common to all analog
ctrcuitry, and that is the interfacing of the analog neurons to each other and to other
hardware components. Fortunately, due to continued advances tn CMOS fabrication
technology, the complexity and computational performance of traditional digital
circuitry has increased dramatically over the past decade. As well, operating voltages

of these devices have decreased, resulting in reduced energy consumption.

4-2

HARDWARE SYSTEMS EMPLOYING ANNS
Arachmud Bwlugy o

Furthermore, the costs of these components has dropped substantiaily, making it
possible to purchase a relatively inexpensive RISC or CISC processor which provides
computational power comparable to older custom analog systems. While 1t is
possible to exploit these advances in the analog circuits as well, the speed-up already
achieved in the digual systems make them very attractive engines for less aggressive
neural applications. Though not as area efficient as a full custom analog
implementation, parallel arrangements of digital processors can also provide an
effective platform for higher performance neural applications. Such systems may
even take advantage of reconfigurable hardware such as field programmable gate

arrays (FPGAs) to augment the functions of the serial processors.!"!

The target hardware system selected for this study is that of a simple autonomous
mobile robot controlled by an inexpensive digital microprocessor. This system
performs limited precision integer computations and has very limited memory
resources. In order to determine a suitable sensory arrangement for the robot 1t was
felt that one should look 1o existing biological systems for motivation as to the type,
quantity, and arrangement of sensory inputs. This technique has been used
commonly in the past for similar robot applications using non-adaptive control, such
as the cricket robot.’¥ After some consideration, the vision system of the jumptng

spider was selected as the basis for the construction of our robotic sensory system.

4.2 Arachnid Biology

Spiders are very familiar creatures to all of us given their presence in all parts of the
world. However, due no doubt in large part to our familiarity and occasionally even
fear of these creatures, the complex structure and behaviour of these fascinating

animals is generally overlooked. One does not typically stop to admire the intricate
construction of a spider's web, nor do most people realize that not all spiders build
webs. Some species actually hunt their prey instead of trapping it. The well known
tarantula is one such example. The abulity of a “simple” invertebrate to perform such

intricate behaviours gives us some insight into the true complexity of these creatures.

When one does stop to investigate further, one finds that spiders are, in essence,

signal processing machines. Their relatively simple collection of neural cells, the

43

HARDWARE SYSTEMS EMPLOYING ANNS
Arachnid Bwlogy

ganglia, are responsible for the processing and coordination of a whole host of
senses. These senses include tactile receptors in the form of innervated hairs which
cover the majority of the spider’s body. Most of the hatrs provide feedback relating
to physical contact with objects, while a few others are so sensitive that they are
capable of detecting the motion of minute air currents. This interesting ability
permits the spider to sense the motion of prey in its immediate vicimity without

making physical contact with 1z.

In addition to tactile stimuli, -
there are also chemical receptors
located on the first of the

spider’s four pairs of legs. These
receptors provide the animal

with a sense of smell, and

perhaps taste as well.

Being an invertebrate, the load-
bearing structure of the spider is
provided by a rigid exoskeleton.
In order to ensure that physical
stresses do not result in damage
to the exoskeleton, the spider
has evolved a series of stress
sensors which are distributed
across the surface of its body. A

large proportion of these sensors

are concentrated near the joints

)) Figure 24: Jumping spider indigenous to Manitoba.
of the eight legs, since these are

regions of high mechanical

stress. Not only must the legs carry the weight of the spider's body while it moves
across a horizontal surface, but they must also support the animal in a variety of
orientations, such as when suspended from the underside of a leaf or hanging from

aweb. Such conditions may result in considerable stress being applied to the legs, so

HARDWARE SYSTEMS EMPLOYING ANNS
Arachnid Biology

it is of critical importance to have a mechanism to measure this stress in order to
prevent the overloading of these vital members. Also present within the leg joints are
a number of propnoreceptors which provide feedback concerning the position of

each of the leg joints.

While all but a few species of spiders possess eyes, most species have rather poor
vision. Web spiders, for example, receive most of the sensory information they
require through the vibration of their webs. Their eyes are necessary only to detect
motion, which plays a part in courtship and in reacting to possible danger from
predators. Web builders rely mainly on their tactile abilities in determining the
location of prey which become entangled in their web traps. As was previously
mentioned, there are several species of spiders which do not build webs for trapping
prey but instead actively hunt. As one can well imagine, good vision would be a
significant asset to those spectes. As a result, the vision in these spiders is

considerably better than their web building cousins.

The group of spiders possessing
the most acute eyesight are the
jumping spiders (salticidae).
While there are many species of
jumping spider they all share one
common prominent attribute; a
large pair of forward facing eyes.
Known as the anterior medial

(AM) eyes, these eyes provide the

spider with superb vision over

) o Figure 25: Frontal eye arrangement of a local
short distances, which is very jumping spider showing the large AM and smaller AL

important for the identification
and tracking of prey. The photomicrograph of figure 25, from our laboratory, shows
the frontal view of a typical jumping spider (figure 24) indigenous to Manitoba. One

can clearly see the large AM eyes.

4-5

HARDWARE SYSTEMS EMPLOYING ANNS

Arachnid Biology

Figure 26: Visual field of the jumping spider.3¢!

In addition to the main eyes, the jumping spiders also poses two additional pairs of
eyes which are used pnmarily to detect motion. One of these pairs, the antentor
lateral (AL), is located next to the AM eyes on the forward looking surface of the
spider’s body. These can also be seen clearly in figure 25. The remaining pair, the
posterior lateral (PL) eyes, are located on the sides of the body just behind the AL

eyes.

Each of the three pairs of eyes provide quite different fields-of-view. Figure 26 shows
the arrangement and relative fields-of-view of the spider’s six eyes when seen from
above. While the four lateral eyes collectively provide a large field-of-view
approaching 360°, they do so at the expense of visual acuity. Each PL eye provides
vision over an angle of approximately 130°, while the ALs cover an angle of

approximately 60° each. There is significant overlap of the ALs at the front of the

HARDWARE SYSTEMS EMPLOYING ANNS
Autvnomous Mobile Robot

animal. In contrast to the PLs and ALs, the AM eyes provide detailed viston 1n only
a narrow field of approximately 10°. In order to make the best use of these higher

definition detectors, nature has provided the spider with the ability to point the ALs
over a range of approximately 70° through the use of muscles attached to the retina
at the rear of the eye. Motion detected by the PLs or ALs causes the spider to turn its
body to face the object of interest where it can then be examined in detail by the more

capable AM eyes.

It is the jumping spider’s vision system which has been selected as the basis of the
sensory system developed for the autonomous mobile robot which we have

constructed during this thesis.

4.3 Autonomous Mobile Robot

@ & 6§ § % &a @ 8 8 0 a2 & 96 .8 NS SR A EE S G0 A RS S E S N8 E N SR g8 RN EC O RS S E a8
The robotic system used in this investigation ts shown in figure 27. As can be readily
seen from this figure, plastic LEGO® Technic building bricks are used for the
mechanical and structural components of this robot. They allow for considerable

flexibility in design and construction, while at the same time ensuring that the final

Figure 27: Profile view of second generation LEGO® robot.

4-7

HARDWARE SYSTEMS EMPLOYING ANNsS
Autonomous Mobile Robot

system is robust. Control of the robot 1s provided by a Motorola® MC68HC1 1 based
microcontroller board designed at the Massachusetts [nstitute of Technology's Media
Laboratory.!8.29! This board, named the HandyBoard. is capable of receiving input
from seven analog and six digital sources, and is able to provide direct control of four
DC motors. Conversion of analog inputs to digital values is performed by an A/D
converter resident within the HC11 processor. The processor’s 8-bit address bus
allows for a total addressable system memory space of 64k bytes. However, this
address range is shared between support for memory mapped peripheral hardware
and 32k of combined program and data RAM. These modest resources significantly
constrain the complexity of the neural algorithms which may be implemented on the

processor.

While the processor itself is capable of only 8-bit integer computations, a simple
multi-tasking operating system and C compiler/interpreter are available for this
board, permitting limited operations on 16-bit integers as well as some suppor for
floating point numbers. The compiler/interpreter, known as Interactive C, was also
onginally developed at M.I.T. and is now sold commercially. It allows for convenient
programming of the HandyBoard using a subset of standard C programming

constructs and conventions.

The robot pictured in figure 27 is actually the second generation of robot designed
for use in this work. The orniginal system, shown in Figure 7 of chapter 3, used an
earlier implementation of the HandyBoard and provided movement of the robot
through the use of a differential tractor drive mechanism, powered by two high-
speed DC motors. These motors were connected to the tracks through a gear
reduction system which reduced the output speed while increasing the torque
provided to the tracks. Unfortunately the gear mechanism, which was also
constructed from plastic LEGO gears, suffered from a serious friction problem that

ultimately made this design unworkable.

Ir an effort to improve on the tractor drive it was felt that the simple DC drive motors
should be replaced by stepper motors. The operation of a stepper motor is more

complicated than a DC motor but provides significantly higher torque at low speeds,

HARDWARE SYSTEMS EMPLOYING ANNS
Autonomous Moble Robot

thus obviating the need for a gear system. As a result, wheels can be affixed directly

to the motor shaft, allowing for a more compact and efficient overall design. In the

robot of figure 27 two stepper motors are used, one for each of the two wheels. The

use of wheels allows for a straightforward and reliable means of locomotion through

the robot’s environment. Movement and steening of the robot is achieved through the

differential operation of these wheels.

While the DC motors are driven by applying a
DC stimulus to a single motor winding, the
stepper motors, in contrast, contain four
windings which must be excited in a cyclical
pattern 1n order for the motor shaft to maintain a
uniform speed of rotation in a particular
direction. For the stepper motors used here,
excitation of a single winding results in a 7.5°
rotation of the shaft. Thus for one complete 360°

revolution each winding must be excited in

ol
common

®

02

common
o3

Figure 28: Stepper motor winding
arrangement.

sequence 12 times. If the HandyBoard were required to supply this excitation it

would place a significant load on the processor, further restricting the already meagre

computational resources available to the neural control algorithm. In order to avoid

this impediment, a custom slave controller was designed which provides the

necessary excitation to the two stepper motors in response to direction and speed

information supplied by the main HCL1 processor. This allows the HC11 to 1ssue a

single command to the motor controller and then to continue with its regular

processing while the slave processor coordinates the low-level operation of the

motors. No further intervention is required by the main processor until either the

direction or speed of the motors requires adjustment.

The slave controller, pictured in figure 29, receives commands written to ar 8-bit

register by the main HC11 processor. The controller’s PIC16C55 processor then

interprets these commands, consisting of a direction bit and 3-bit speed value for

each motor. Based on this value an appropriate motor excitation is generated and

supplied to the windings through a driver [C. The DIP switches visible at the right of

4-9

4.3.1

HARDWARE SYSTEMS EMPLOYING ANNS
Autonomous Mobtle Robot

A G s
«asenoeaueceaenyvl

O
I

e P

N

i

————y

150+ >

N

figure 29: Stepper motor control drcuit.

figure 29 permit adjust of the mapping between actual robot speed and the

corresponding command byte value.

Robot Sensory System

As was discussed in section 4.2, the biological motivation for the robotic sensory
system is the vision system of a jumping spider. As is the case with the spider, the
robot’s visual experience consists of the combined input from six analog optical
detectors mounted on the robot’s front surface. Each of these sensors were selected
such that their fields-of-view were roughly comparable to that experienced by the

spider itself.!

The first sensor pair corresponds to the narrow field-of-view of the spider’s anterior
medial eyes. An Optek OP805 phototransistor was selected here. In order to measure
the true angular response of these detectors, a test jig was constructed which permits
the detector to be excited by a common optical source and its response recorded.
This apparatus, shown in figure 30, allows a source to be placed a fixed radal
distance from the detector and moved over an angular distance of £90° relative to the
centre line of the detector. A total of 29 measurements were recorded at fixed
intervals over this 180° arc. This process was performed at 7 different radial

distances, beginning with a Lcm gap between source and detector, and concluding

It is stressed that the complexity of the spider’s eyes greatly exceeds that of the optical detectors employed in this
robot. However. the essence of the current study is the coordinated interpretation of the detector values.

4-10

HARDWARE SYSTEMS EMPLOYING ANNS
Autonumous Mobile Robot

Figure 30: Sensor characterization apparatus.

with a 10.6cm gap. Since the detectors will be connected to the analog input ports
of the robot’'s HandyBoard controller, this board was also used here to perform these
measurements. The resulting response of the sensor is shown graphically in

figure 31. As can be seen from this figure, the phototransistor provides a strong

response over a range of approximately £15°.

20
40 ~
60
80
100
120 -
140-1
160
180
200 -
220 -
240

Light intensity

Figure 31: OP805 Phototransistor response vs. angle to source.

4-11

HARDWARE SYSTEMS EMPLOYING ANNS
Autonomous Mobrle Robot

20
40
60 -
80 4
100 -
120 -
140
160 -
180
200
220 -
240 -}

Light Intensity

Angle (degrees from centre)

Figure 32: .14C1 Phototransistor response vs. angle to source.

The second pair of optical detectors used were L14C1 phototransistors which
correspond to the anterior lateral eyes of the spider. As was done with the OP805
detectors, the response of the L14C1 sensor was tested using the same procedure
described above. The response of this sensor is shown in the plot of figure 32. Here

the detector shows sensitivity over a range of approximately +30°.

Finally, a pair of cadmium sulphide photoresistors were used to represent the
posterior lateral eyes. Again, the response of these detectors was tested
experimentally, resulting in the plot of figure 33. These detectors provide a strong
response to optical stimulus over a broad angular range of approximately £80°.
Though not obvious from these measurements, it should be noted that the
photoresistors respond much more slowly to sudden changes in light intensity than

do the pairs of phototransistors. This behaviour will impede the ability of this

4-12

HARDWARE SYSTEMS EMPLOYING ANNS
Autonomous Mobile Rubot

Light Intensity

LI I 19
o (=4 (=]
~N - o -]

-20

I
=)
hi

Angle (degrees from centre)

Figure 33: Photoresistor response vs. angle to source.

particular pair of sensors to track rapidly changing sources, should such a situation

anse.

The six sensor were arranged on the front of the robot as shown in figure 34.

Figure 34: Robot sensor arrangement.

4-13

HARDWARE SYSTEMS EMPLOYING ANNS
Autonomous Mobnle Robut

4.3.2 Optical Stimulus Board

Since we employed this robot as a test mechanism for the neural algorithms 1t was
necessary to have some means of providing a well controlled, repeatable optical
sumulus to the robot. In order to achieve this, a light panel was constructed which
consists of a 5-by-5 grid of light emitting diodes against a contrasting matte black
background. The light board is controlled by a custom designed microcontroller
board also constructed by the author using a PIC16C74 microprocessor. This allows
for any or all of the LEDs to be illuminated at any one time. A series of up to 22 of
these light patterns can be downloaded to the board from a Macintosh through a
standard RS-232 senal interface. Following download, the PIC controller repeatedly
cycles through the patterns at regular intervals. The inter-pattern timing may be
adjusted under software control. Red LEDs were used in the design of the light board
because their wavelength (635nm) most closely matched the peak reception

wavelength of the OP805 and L14C1 phototransistors (870nm).

Figure 35: Light board.

4-14

Simulations of CL for Robot Vision 5

he algorithmic simulations reported in chapter 3 considered only a two
Tdimensnonal input environment. Those investigations were then extended into
higher dimensional environments based on the visual system of the robot. In place
of the simple Gaussian clustering problem used previously, we wanted to select a task
which would be appropriate for the robot to perform given the complexity of its
optical sensory apparatus. It was decided that detection of both stationary position
and directional motion of a single light source would be a useful and challenging
behaviour. For the robot to detect the stationary position of a source, all that is
required is intelligent processing of the robot's six analog inputs at any instant of
time. However, for there to be any possibility of detecting motion, the system will
require not only the present readings from its sensors but some time delayed values
as well. Based on this requirement the input to the neural network also involved
sensor readings with a single ume delay, i.e. readings taken at times t and t—!, which

result in a twelve dimensional input for this particular robot.

Before attempting to simulate learning with the full complex geometry of the robotic
vision system, we first investigated the ability of the neural algorithms to cluster both
stationary and moving patterns using a somewhat simpler sensor geometry. This
geometry was then made progressively more complicated until it mimicked the
robot’s true sensory apparatus. Once we were confident that the problem was
leamable within the constraints of the controlled simulation environment, the same

task was tested on the actual robot operating in the real world.

5-1

5.1

SIMULA TTIONS OF CL FOR ROBOT VISION
Idennfication of Stuttonary Posiwn

Identification of Stationary Position

% @ 8 @ E 5 @ 5 0 F AU E S S O8O " S8 PSS E S S PO WS sy 6P P B S S DS ST S BS O8RS S

We shall begin by first examining the situation of a sensory system whose geometry
closely matches that of the excitation. This would correspond. for example, to an
ammal which has evolved sensory apparatus that is highly adapted to a specific
sensory task. For this investigation the sensor arrangement depicted in figure 36 will
be employed. Here the virtual sensors are placed in a cross arrangement with an
intersensor spacing of two grid units. All five of these sensors have identical fields-
of-view of £25° from centre and all are oriented with their centres perpendicular to

the sensor plane (facing the light sources).

For the purposes of training, an artificial Light sources
dataset was generated which modelled the °
output of the five sensors in response to 0
excitation from an array of lights placed a it L)

. o ¢
distance of five grid units from the sensor °
plane. As the figure illustrates, the ¢] 0
geometry of the light array in this case

L

matches that of the sensors themselves.

Each individual training pattern in the Figure 36- Simple sensor and
dataset corresponds to a single element of excitation geometry.

the light array being illuminated. To

provide a more realistic model of the sensor response, a small amount of Gaussian
random noise 1s added to the modelled sensory outputs. A tratning file consisting of
1000 patterns was produced using a standard deviation of 0.001 for this noise. Each
of the five lights was illuminated an equal proportion of the time resulting in 200
patterns for each light. The 1000 patterns were then stored in the training file in a

random order, thus avoiding the introduction of unwanted systemic effects into the

trazining process.

In addition to the training dataset, a test dataset was also generated which consisted

of noise free versions of the five light excitations, as well as four new excitations

511

5.1.2

SIMULATIONS OF CL FOR ROBOT VISION
Idennfication of Stanonary Postion

corresponding to lights placed at the four vacant corners of the light array. This

produced a nine pattern test file corresponding to a full 3x3 gnd of hghts.

A network consisting of five inputs and five outputs was constructed which learned
its representation from the training dartaset. Initial network wetghts were randomly
selected from a Gaussian distribution with mean 0.5 and standard deviation of 0.1.

The leamning rate used for all simulations was £=0.001.

If the network is able to discover the ideal solution, each of the five output units
should ultimately learn to represent the excitation from one of the five light sources.
That is to say that each output unit should learn to act as a spaual detector for the
specific area of the input space in which a light resides. What will be of particular
interest is how a successfully trained network responds to the four corner patterns
which were not members of its original training set. Will the network be able to
generalize on the knowledge gained from the five learned positions in order to

provide a useable classification of these four additional patterns?

Hard Competitive Learning

The first algorithm tested on this learning task was hard competitive leaning. As was
expected in light of our earlier studies, this algorithm yields consistently sub-optimal
solutions. In these solutions a subset of the output units positioned themselves such
that they represented the input vectors, while the remaining units were left unused.
The precise number of unused units varied depending on the initial values of the
weights. With the weights randomized around 0.5 it was typical to only have a single
unit or two unused. However, if the weights were initialized around 1.0 or more,
only one unit would take responsibility for all 1000 data points, thereby leaving four
units unused. This example once again clearly demonstrates that HCL is strongly
susceptible to the orphaned unit problem and will generally provide unsatisfactory

results when presented with a complex input environment.

DeSieno Frequency Sensitive Competitive Learning

The second algorithm tested was the DeSieno implementation of FSCL. For these
simulations each unit's bias distance (B) was set to 0.0001, as before, and a bias factor

(©) of 10 was initially used. The result was surprisingly poor network performance.

5-3

SIMULA ITONS OF CL FOR ROBOT VISION
Idenafication of Stanonary Posiwon

Repeated training resulted in the algorithm locating the optimal solution 1n only
approximately 50% of the learning trials. Upon further investigation 1t was
discovered that the poor quality of the network’s solution was a consequence of
improper selection of the bias factor. When this value was changed from 10 to 2 and
the simulations repeated. the network was able to consistently locate the optimal
solution. However, if the weights are now intialized in an area much farther away
from the data, such as around the value 2.0, the network would consistently fail to
utilize all units. It was necessary to increase the bias factor needed to near 70 before
the network was able to draw all five units in a solution. Unfortunately, the solution
achieved under these conditions was completely unusable. Due to the high bias, all
units end up selecting identical weight vectors. This strange behaviour appeared to

contradict the frequency sensitive nature of the algorithm.

The reason for the unusual learning behaviour is a direct consequence of the way in
which the conscience mechanism is introduced into the learning process. The
conscience augments the winner selection mechanism of HCL by adding the bias
term into the distance computation (equation 7). That is to say, the value which
determines which unit undergoes a weight update is the distance from a unit to the
input vector, minus the value of the computed bias term. The strength of this bias
term depends on the choice of the bias factor. If the bias factor 1s set too large, it will
make an inappropriately large contribution to the distance calculation, dominating
the computation for even small differences in the winning proportion of the units.
This results in the poor solutions that were initially observed. Conversely, if the bias
factor is made too small the conscience will be too weak and will not be capable of

influencing the computation enough to avoid the orphaning of units.

This results in a significant problem. The main reason for using the conscience
mechanism in the first place is to ensure that all units are contributing to a solution.
If the bias factor is set too small this goal is not accomplished. However, if set too
large all units are contributing, but the resulting solution is unusable because it
doesn't take into account the intricacies of the statistics of the data distribution. This
places us in a quandary. The bias factor must be large in order to use all the units,

but it must be small to allow those units to learn something useful about the data. A

5-4

5.1.3

SIMULATIONS OF CL FOR ROBOT VISION
Idenafication of Stationary Positwn

possible compromise may be to initiate the training procedure with a large bias factor
10 ensure that no umits are orphaned, and then to reduce this value as training

continues, thus permitting the network to fine tune the solution to better fit the data.
However, this would further complicate the algorithm by requiring the addition of
yet another adjustable network parameter, the bias factor decay. As well, it is unclear

what should govern the inutial size of the bias factor when beginning training.

Krishnamurthy Frequency Sensitive Competitive Learning

As an alternauve to the DeSieno version of FSCL, the Krishnamurthy im plementation
was examined. The fairness function used for these tests was F(u) =u,, where u, is the
number of times unit i has won a competition. This algorithm was found to work
quite well, consistently locating the optimal solution to the task at hand. What makes
this algorithm significantly different from the DeSieno technique is the fact that the
fairness function 1s a multiplicative term in the distance calculation, as opposed to
an additive one. This allows FSCL to avoid the bias factor magnitude problems

prevalent in FSCL,.

In situations where the weights are initialized such that they place the units far from
the data, FSCLy will simply require longer training times in order to allow all these
units to become included in the solution, but they will definitely all be used. The
only major concern here is training long enough for that to take place. A second and
perhaps even more important advantage of this technique is the fact that it has no
learning parameters which need to be adjusted (except for the ubiquitous leaming
rate). This significantly improves the reliability of the training process by eliminating

additional [ree parameters from the algorithm.

While FSCLy successfully learns to identify the five clusters present within the
training data, testing with the additional corner points identifies a further difficulty.
This lies not with the network’s ability to identify the data clusters, but with the
winner-take-all form of the output activations. Due to the nature of these outputs,
the network must select a single unit as the winner to represent the classification of
any input vector. If the vector happens to be only slightly closer to one unit then

another, the first unit will assume full responsibility for that vector. As well. if the

5-5

SIMULATIONS OF CL FOR ROBOT VISION
{dennfication of Statonary Posiaon

vector is far from all the clusters but marginally closer to one unit, that one umt wiil
again take full responsibility for the vector and produce an activation of 1.0. This ts
not the most desirable result because 1t provides no information as to the confidence
the network has in its classifications. To achieve that it would be necessary to replace
the winner-take-all nature of the output activations with some form of soft activation.
This was done by using the following activation equation:
1\-1
(Z("; - W.-,)')
0, =—1 13

3T

This equation was only used for the computation of the activation value and did not

affect the method used in updating the weights. The traditional winner was still used

for the purpose of performing these weight adjustments.

As a consequence of this change the network was now able to provide a much more
informative and useful classification of the input vectors. This benefit can clearly be
seen in figure 37 which shows the network activations using the local representations
of the WTA outputs on the left, and the distributed representation resulting from the
use of equation 13 on the right. The bottom cells (identical in both diagrams) show
the input vector being applied, which is the top-left (TL) source in this case. A full
shaded cell in this figure corresponds to an activation of 1.0. The network activations
produced by each of the five output units in response to excitation by all nine vectors
of the test dataset are given in table 3. Of particular interest is the classification of

the four corner patterns which are now represented as a combination of two of the

five primitive states. For example, the top-left corner light is being partially

w1 T
Figure 37: Activations of the FSCLy network with a local and
distributed representation of the same input vector.

5-6

5.1.4

SIMULATIONS OF CL FOR ROBOT VISION
Idenafication of Stanonary Position

1.0 0.0 0.0 0.0
0.0 0.0 00 0.0
0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0
0342 0090 0.136 0.090
0342 0342 0.136 0.09
0090 0090 0.136 0.342
0.090 0.342 0.136 0.342

Table 3: Response from the Krishnamurthy FSCL network employing analog activations.

represented by both the top and left tuned output units. This use of analog

activations significantly improves the effectiveness of the FSCL, algonthm.

Soft Competitive Learning

The final algorithm tested was soft competitive leaning. Again, network weighis were
randomized to values around 0.5, and the variances of the radial basis functions were
tnitially set to 0.004 to be consist with the earlier low dimensional tests. It was found
that SCL was capable of learning this problem but that success in reaching the
optimal solution depended on the proper selection of the variance. The initial
variance of 0.004 did not provide very good results, but when this vanance was
increased to values on the order of 0.1 the network was able to easily provide proper

clustering of the training data.

When presented with the nine vectors of the test set, SCL was found to produce

excellent classifications of the four corner patterns. The inherent analog nature of the
Gaussian activations provides a clear indication of the combined classification based
on the five primitive states. Typical activations produced by this network for the nine

lest patterns are given in table 4.

As this learning task has demonstrated, a critical factor in the use of this algorithm
is the selection of an appropriate variance for the Gaussian basis functions. If this
parameter can be selected appropriately the algorithm performs well. However, as
with the choice of the bias factor in the DeSieno version of FSCL, the selection of the
variance is actually a two edged sword. This value must be made small enough 1o

ensure that the units span only a single data cluster, while at the same ume being

SIMULATIONS OF CL FOR ROBOT VISION
Idenaficunion of Object Motion tn a Matched Sensory Environament

0.0 0.0 1.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0
0.0 1.0 0.0 0.0 0.0
0497 00 0503 0.0 0.0
0.0 00 0499 00 0.501
0.500 0.500 0.0 0.0 Q.0
0.0 0498 00 0.0 0502

Table 4: Typical activations from the SCL netwark for the nine vector test dataset.

large enough to make significant advances toward the data in the case when the
weights are initialized far from the data. To address this problem, the basic SCL
algorithm was modified by introducing a vanance decay parameter which will allow
the network to begin training with a large variance, and as training progresses, shnnk
this variance in order to refine the classifications. This modification has been
employed by others in the past/™ and is in many ways reminiscent of the
neighbourhood technique employed by Kohonen in the self-organizing feature maps.
However, as was already discussed, SCL differs from SOFM in that all units adjust
their weights at every stage of the learning process, regardless of their location in the

network.

5.2 I|dentification of Object Motion in a Matched Sensory Environment

Having now tested the algorithms on

stationary patterns, the learning task was :

made more difficuit through the introduction

of motion. To achieve this, a new artificially C] l

generated training set was produced basedon CL .ﬁ - . - B I
the sensor and light geometry of figure 36. 1

Each training pattern now consisted of a ten]

dimensional input vector made up of the five .

sensor values corresponding to a single light 8¢

on in one location followed by the five sensor Figure 38: Light transition diagram.

values for a single light on in an adjacent

5-8

SIMULATIONS OF CL FOR ROBOT VISION
Idenaficanon of Obgect Motion tn « Matched Sensory Environment

@ o @cr @ c@ " Yei

’ /
o @ o o ®
BR

BL BC BL BC BR

Figure 39: Diagram showing light motion transitions used in testing network generalization.

location. In the case of five lights this corresponds to a total of eight unique light
transitions as shown in figure 38. As was done with the stationary light datasets, a
small amount of Gaussian noise was added to the calculated values of the sensors in
order to more closely mimic the behaviour of a real sensor. A total of 1000 patterns
were generated for the training set. These vectors were randomly ordered in the
training file so as to remove any undesirable systemic characteristics which may

mnterfere in the training process.

In addition to the training file, three different test datasets were also prepared. The
first of these involved the eight noise free versions of the above transitions plus
sixteen additional transitions corresponding to the inclusion of the four corner lights.
Each of these lights adds two additional vertical and horizontal transitions. The left-
hand portion of figure 39 shows all 24 of these (Manhattan) transitions. The second
test dataset prepared was intended to test whether the network was capable of not
only generalizing to horizontal transitions, but also to diagonal ones. To achieve this,
a dataset of sixteen vectors was generated which corresponds to the transitions
depicted in the right-hand diagram of figure 39. The final datasets comprised a nine
vector file intended to evaluate how a network trained to identify motion interprets
the situation where no motion is present. In other words, the ten dimensional input
vector consisted of two identical versions of the five sensor values, representing no

change in the sensor state from time ¢-! 1o t.

5.2.1

5.2.2

SIMULATIONS OF CL FOR ROBOT ViSiON
Idenafication of Object Motiwon in a Matched Sensory Environment

A single layer network consisting of ten inputs and eight outputs was constructed.
As before, a learning rate of €=0.001 was used for all training situations and the
network weights were again randomized around the value 0.5 with a standard
deviation of 0.1. If the network is able to locate the optimal solution it should tune

each of the units to detect one of the eight primitive light transitions.

Hard Competitive Learning

The hard competitive leamning algorithm was examined first and found to perform as
poorly on the motion clustering problem as it did when confronted with the
stationary pattern problem in the previous section. The network consistently failed
to make use of all the units in encoding the training data. As before, this problem was
exacerbated when the weights were initialized farther away from the data. Based on
these test it is clear that hard competitive learning would not be an acceptable

learning algorithm for use on this or other similar tasks.

Krishnamurthy Frequency Sensitive Competitive Learning

The second algorithm investigated was the Krishnamurthy version of FSCL. This
method was found to very reliably cluster the training data into the eight primitive
transitions. As well, the generalization abilities of the network were tested on the
twelve new transitions (to and from the four corner points). It was found that the
network was able to appropriately represent these new transitions as a combination
of the eight learned transitions. The Hinton diagram of figure 40 shows the resulting
weight vectors, with a fully shaded cell representing a weight value of 1.0. A list of

typical activations resulting from the 24 test patterns is provided in table 5.

As an example, consider the transition from the top-right corner position to the top-
centre position (TR—>TC). This transition is represented by a strong excitation of the
transitions centre-right to centre (CR—>C), top-centre to centre (TC—>C), and centre
to top-centre (C—>TC). With the later two transitions being complementary, one is
left to correctly conclude that the primary direction of motion for the light was from
right to centre. As well, the fact that the two complementary transitions both
involved the top light position allow us to further conclude that the right to centre

transition occurred in the top region. It should be noted that though the

5-10

SIMULATIONS OF CL FOR ROBOT VISION
Idennfication of Object Motion tn a Matched Sensory Environment o

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 Q9.0 0.0 0.0 1.0
0086 0.175 009 0.391 0191 0076 0.096 0.086
0096 0197 0.191 0.175 0.096 0086 0.086 0076
0086 0.096 0175 0.191 0.191 0.096 0.076 0.086
0076 0.191 0.191 0.096 0.175 0.086 0.086 0.096
0097 0191 008 0.175 0096 0.086 0.191 0076
0.191 0175 0096 0.991 0.086 0076 0.096 0.086
0.191 0096 0096 O0.191 0.086 0.096 0.175 0086
0175 0191 008 0096 0.076 0086 0.191 0.096
0086 0076 0096 0.086 0.191 0.175 0.096 0.191
0096 0086 0.1917 0076 0.096 0.1917 0.086 0.175
0086 009 0.175 0.086 0.191 0096 0.076 0.1N
0076 0085 0.191 0.096 0.175 0.191 0086 0.096
0096 0086 0085 0076 0.096 0.I91 0.191 0175
0191 0076 0096 0.086 0.086 0.176 0.096 0.191
0191 0.096 0076 0.086 0.086 0096 0.175 0.191
0.175 0086 008 0.096 0.076 0.191 0.191 .0.096

Table 5: Activations of a FSCLy network in response to horizontal and vertical motion patterns.

D@I@DDIEI@
(0] 00 00
OO o Ce
IEIEIE!IEHE

[=]
RN W
OO OOOmc] 10
B0 0] o0l

Figure 40: Hinton diagram of FSCLy network weights
following training on the motion detection task.

5-1

SIMULATIONS OF CL FOR ROBOT VISION
Idennfication of Obpect Motton 1n a Matched Sensory Environment

complementary transttions also both involved the centre position, this does not

umply that the transition took place in the centre region because the night to centre

transition is a primitive transition and would have been the only active unit had that

situation actually occurred.

Based on these very encouraging results the second test dataset containing the
diagonal transitions was presented to the network. As with the honzontal and

vertical transitions just discussed, it was found that the network was able to

generalize very well to these diagonal transitions. When presented with one of the

test patterns the network produced a strong activation from two of its units

representing the primitive horizontal and vertical transitions which together result in

the actual diagonal direction of motion. The complete list of network activations

resulting from the application of this training set can be found in table 6.

Table 6: Activations of a FSCL network in response to diagonal motion pattems.

0073 0.073 0073 0280 0280 0.073 0073 0.074
0073 0280 0280 0.073 0073 0.074 0.074 0.073
0.280 0.073 0.073 0.280 0.074 0073 0.073 0.074
0.073 0.280 0074 0073 0.073 0074 0280 0.073
0.074 0.073 0.073 0074 0.280 0.073 0.073 0.280
0073 0.074 0280 0.073 0.073 0280 0.074 0.073
0.280 ©.073 0.073 0.074 0.074 0.073 0.073 0.280
0.073 0.07¢ 0.074 0073 0073 0.280 0.280 0.073
0.094 0.094 0.069 0242 0094 0.094 0242 0.069
0.242 0.242 0.094 0.094 0.069 0.069 0094 0.094
0.094 0.094 0.242 0242 0.094 0.094 0069 0.069
0.069 0.242 0.094 0094 0.242 0.069 0.094 0.094
0.069 0.069 0094 0.094 0242 0242 0.094 0.094
0.094 0.094 0242 0069 0094 0.094 0069 0.242
0.242 0.069 0.094 0.094 0069 0.242 0.094 0.094
0.094 0094 0069 0.069 0094 0.094 0242 0.242

Lastly, the FSCL¢ network was tested on the final training set which encodes the

stationary excitations. In response to these test vectors, the network produced a

strong activation for the two complementary transitions representing the TC, CL, CR,

5-12

523

SIMULATIONS OF CL FOR ROBOT VISION
Idennficanon of Object Motion in a Matched Sensory Environment

and BC postitions. For the centre position, the network produced identical outputs
from all eight units. In the case of the four corner positions the system produced a
strong activation from the four units which constitute the two complementary pairs
of transitions corresponding to that particular corner location. The actual activation
values themselves are presented in table 7. The fact that the network is able to encode
the stationary positions through an aggregation of mouon detectors means that a
robot (and perhaps even a biological system) does not necessarily require a separate

detection mechanism to identify this behaviour.

0.094 0242 0094 0.242 0094 0069 0.094 0.069
0069 0094 0242 0094 0242 0094 0.069 0.094
0.125 0325 0.125 0125 0.125 0.125 0.125 0.125
0.242 0.094 0069 0.094 0069 0.094 0242 0094
0.094 0.069 0094 0.069 0.094 0242 0.094 0242
0.089 0.161 0.161 0.361 0.161 0.089 0.089 0.089
0.161 0.161 0.089 0.61 0.089 0.089 0.161 0.089
0.089 0.089 0.161 0.089 0.161 0.161 0.089 0.161
0.161 0089 0.089 0.089 0.089 0.161 0.161 0.161

Table 7: Activations of a FSCLy network in response to stationary exdtation patterns.

Overall, the FSCL algorithm performed exceptionally well on all facets of this
problem. This outcome is extremely encouraging given the simplicity of the

algorithm itself.

DeSieno Frequency Sensitive Competitive Learning

The next algorithm to be tested on the motion identification task was the DeSieno
version of FSCL. For these tests the network parameter values B=0.0001 and C=2.0
were used. Weights were once again randomized around 0.5 prior to the start of
training. Under these conditions, the network was able to locate the optimal solution
on a number of training trials but was quite susceptible to becoming trapped in sub-
optimal solutions. As was the case with the tests in section 5.1.2, the quality of the
solutions dropped considerably as the weights were initialized farther away from the

data. Increasing the value of the bias factor was once again able to draw zll units into

5-13

5.24

SIMULATIONS OF CL FOR ROBOT VISION
Idenaficaton of Object Motiwon in u Matched Sensory Environment

a solution, but the solution achieved was unusable since all resulting weight vectors

were 1dentical.

In those situations where FSCLj, was able to locate the optimal solution its weights
vectors were found to be equivalent to those discovered by the FSCLy network. When
the FSCL, network was modified to use the analog activations of equation 13 the
network’s performance on the three test datasets was found, in this case, to be

equivalent to those produced by the Krishnamurthy technique.

Soft Competitive Learning

Once again, soft competitive learning was the last algorithm to be tested on the
current learning task. The initial variance of all units was set to 0.1, with a variance
decay factor of 0.995. and a minimum variance limit of 0.0044. Network weights
were initially randomized around 0.5. Following training the network was found to
have correctly learned to identify the presence of the eight primitive directional
transitions, assigning one unit to each. Unit activations in response to the first test
dataset, are provided in table 8. Of note is the clearer classifications made by this
network in comparison to FSCLg. This is mainly a result of the nature of the Gausstan
activation functions used by this technique. In any case, it is easy to see that the

solution is functionally equivalent to that achieved by FSCL,.

Testing the network on the diagonal transition dataset also produces roughly
equivalent results to those described for FSCL, with the exception that the
activations produced for the two constituent primitive directions of motion are
maximally excited, while all other units produce a zero output. This same behaviour
was observed when testing on the stationary pattern set. The activations resulting

from that test are provided in table 9.

While all networks, except for HCL, were able to locate solutions to this problem,
they did not all reach those soiutions in the same amount of time. The plot of
figure 41 shows the relative mean-squared-error performance versus time for each
algorithm. As was done in the low dimensional analysis, the error trace for the SCL
algorithm is an adjusted version of the actual SCL error measure, based on the known

properties of the solutions space. All four of these algorithms were trained beginning

5-14

SIMULATIONS OF CL FOR ROBOT VISION
Idennficunion of Object Motion tn a Matched Sensory Environment

0.0 0.0 0.0 1.0 0.0 00 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 1o 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0 00 0.0 0.0
0.141 00 0430 0429 00 0.0 0.0 0.0
0.428 0.431 0.0 o041 0.0 0.0 0.0 0.0
00 0.141 0429 0430 00 0.0 0.0 0.0
0429 0.430 0.4 0.0 0.0 0.0 0.0 0.0
0429 0.0 00 O.141 0.0 0.0 00 0.431
0.141 0.0 00 0428 00 0431 0.0 0.0
0.0 0.0 0.0 0429 0.0 0431 0.0 O0.I4
0428 0.0 0.0 0.0 00 0342 00 0430
0.0 00 0432 0.0 0.427 00 0.4 0.0
00 0429 00 00 0.140 0.0 0.430 0.0
00 0.141 0.431 0.0 0428 GO 0.0 0.0
00 0430 0.4 0.0 0.0 00 0429 00
0.0 0.0 0.0 0.0 0.141 00 0430 0430
0.0 0.0 0.0 0.0 0.428 0430 0.142 00
0.0 0.0 0.0 0.0 0429 0430 00 0O.147
0.0 0.0 0.0 0.0 0.0 0.141 0430 0428

Table 8: Activations of a SCL network in response to horizontal and vertical motion patterns.

0500 0.0 00 0500 00 0.0 0.0 .0
00 0499 0.501 0.0 0.0 0.0 0.0 0.0
0.125 0.125 0.125 0.125 0.125 0.125 0125 0.125
0.0 0.0 0.0 0.0 0.0 0.501 0.0 0.499
0.0 0.0 0.0 0.0 0.499 0.0 0501 0.0
0.25¢ 0.250 0250 0250 0.0 0.0 0.0 0.0
0250 0.0 00 0249 00 0252 00 0250
00 0.250 0.251 0.0 0.248 0.0 0250 0.0
0.0 0.0 0.0 0.0 0.249 0.251 0.251 0.250

Table 9: Activations of a SCL network in response to stationary exdtation patterns.

5-15

SIMULATIONS OF CL FOR ROBOT VISION
Idenofication of Moawon in an Unmatched Sensory Environment

T 100 200 300 400 500 600 700 800 900
hme (epochs)

Figure 41: Relative MSE* performance of the four learning
algorithms with a well matched sensor geometry.

with the same set of randomly generated initial weights. It is clear from this figure
that not only does FSCL produce a very good solution (corresponding to near zero
error), but it does so very quickly. Convergence is reached in less than 30 epochs.

while FSCL, and SCL required 50 and 85 epochs respectively.

5.3 Identification of Motion in an Unmatched Sensory Environment

Having examined the situation of a sensory system which is well matched to the
geometry of the excitation source, attention will now focus on the performance of the
algorithms under the condition of an unmatched sensory environment. The sensor
arrangement that was used for these experiments is shown in the diagram of

figure 42. As can be seen, an additional sensor has been added to bring the sensor
count up to six, which is the same number of sensors available on the actual robotic
system. However, unlike the robot, the sensors here are still arranged in a perfectly
symmetrical manner relative to the excitation. All six sensors possess a2 +25° field-of-
view relative to the sensor’s centre line and all sensors are oriented perpendicular to

the sensor plane (facing the excitation).

5-16

5.3.1

SIMULATIONS OF CL FOR ROBOT VISION
Idenafication of Motwn 1n an Unmatched Sensory Envtronment

Once again a training dataset was prepared Light sources
which included both the current value of)
the sensors and a single time delayed value.

Sensors [] 0
This results in an input vector in twelve ()
dimensions. A dataset of 1000 randomly . [°
ordered training patterns was generated,
representing the eight transitions between o ® o

the five basic light positions. Each of these

vectors was augmented with a small
Fgure 42: Unmatched sensor and

quantity of Gaussian noise (¢=0.001) to exdtation geometry.

provide more realistic variation between

modelled sensor values. In addition to the training file, three test datasets were also

generated representing the Manhattan transinions, diagonal transitions, and

stationary positions respectively for a full 3x3 grid of sources.

Frequency Sensitive Competitive Learning

Given the poor performance of HCL on the more straightforward problems presented
in previous sections, we will begin this investigation with the FSCLy algorithm. The
network under test consists of a single layer with twelve inputs and eight outputs. An
optimal solution by the network should result in the system once again tuning each

unit to act as a motion detector for one of the eight single primitive transitions.

It was found that the algorithm was able to reliably converge to a successful solution
in approximately 100 epochs. Following this training the network’s generalization
performance was evaluated using the three test datasets. As before, the unseen
Manhattan transitions were represented by the strong activauon of three output
units. These corresponded to the primary direction of motion as well as including the
two complementary transitions from centre to and from the area of motion. (i.e. For
atransition from bottom-left to centre-left, the network excited the bottom-centre to
centre, centre-left to centre, and centre to centre-left transitions.) The activation
values produced here were only slightly different than those generated by the

network when using the well matched sensor geometry.

5-17

5.3.2

SIMULA FIONS OF CL FOR ROBOT VISION
Idennfication of Motion i un Unmatiched Sensory Environment

Tests with the stationary position datasets also produced results consistent with
earlier tests. However, in this situation the activations produced for these patterns
were not as clearly distinguishable as those produced earlier. Typical activation
values are presented in table 10. As can be seen, particularly with the comer
positions (TL, TR, BL, BR), the outputs are not as distinct as those presented in

table 7.

0.093 0079 0.236
0.214 0071 0.107 0.107 0.107 0.071 0.107
0098 0.098 0152 0.152 0352 0098 0.152
0.071 0.214 0.107 0.107 0.107 0214 0.07
0093 0093 023¢ 0079 0079 0093 0236
0.164 0091 0.304 0.141 0.147 0.091 0.104
0.091 0.164 0.104 0.3141 0.141 0.164 0.10¢
0.164 0.091 0141 0.104 0.104 0.091 0.141
0.091 0.164 0.141 0.104 0.104 0.164 0.143

Table 10: Activations of a FSCLy network in response to stationary exdtation using an
unmatched sensor geomnetry.

In the tests involving diagonal transitions, the network performed very well. These
transitions were once again represented by the network as a combination of two
primitive transitions; one in the vertical direction and the other in the horizontal.
The activations produced for this test were very distinct, more so than for the
Manhattan transition tests. In terms of earlier simulations involving the matched
sensory system, this network produced stronger activations for some patterns, and
slightly less distinct activations for other. Overall the performance of the system on

this case is essentially equivalent to the earlier experiments.

DeSieno Frequency Sensitive Competitive Learning

When tested on this clustering task, the DeSieno version of FSCL produced networks
with equivalent generalization performance to FSCLy in the situations where the
system was able to successfully cluster the training data. In order to reliably achieve
this clustering a bias factor of C=10 was required for weights randomize around 0.5.

As was discussed earlier, the reliability of the network in locating a good solution 1s

533

SIMULATIONS OF CL FOR ROBOT VISION
Idennfication of Moton 1n an Unmatched Sensory Environment

strongly dependent on the initial values of the weights and selection of bias factor.

When the weights were randomized to values significantly larger than 0.5, reliable

training was not achievable.

Soft Competitive Learning

Finally, the clustering task was attempted using the SCL network. For this

experiment an initial vanance of 0.2 and decay rate of 0.998 was used. Both of these

values were selected empirically. Under these conditions the network was able to

efficiently learn to cluster the training data into the eight primitive transitions. For

smaller initial variance, such as 0.1, the system had a tendency to become trapped in

sub-optimal solutions.

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 10 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 10 0.0 0.0 00
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.108 0.0 0.000 0.0 0.0 0.108 0.783 0.0
0.108 0.001 00 0.783 0.0 0.108 0.0 0.0
0.0 0.0 0.0 0.641 0.0 0.044 0.314 0.0
0.044 0.0 00 0314 0.0 0.0 0.641 0.0
0.108 0.001 0.0 0.0 0.781 0.108 0.0 0.0
0.108 0.0 0.001 0.0 0.0 0.108 0.0 0.783
0.0 0.0 0.0 0.0 0.641 0.044 0.0 0314
0.044 0.0 0.0 0.0 0.315 0.0 0.0 0.641
0.0 0.108 0.109 0.0 0.0 0.001 0.783 0.0
0.001 0.108 0.108 0.783 0.0 0.0 0.0 0.0
0.0 0.0 0.044 0.641 .0 00 0.315 0.0
0.0 0043 00 0315 0.0 0.0 0.641 0.0
000t 0.108 0.108 0.0 0.783 0.0 0.0 0.0
0.0 0.108 0.109 0.0 0.0 0.001 0.0 0.783
0.0 0.0 0.044 0.0 0.641 0.0 0.0 0.315
0.0 0.043 0.0 0.0 0315 0.0 0.0 0.640

Table 11: Activations of a SCL network in response to horizontal and vertical motion patterns.

5-19

SIMULATIONS OF CL FOR ROBOT VISION
Idennficanion of Motion tn an Unmutched Sensory Environment

Following successful training the network was presented with the three test datasets
and found to provide acceptable generalization performance in most cases. However,
a few of the activation values generated have the potential of leading to
misidentification. The activation values arising from the Manhattan transition tests
are listed in table L 1. Note that the output of unit 1 for the transinons CL->TL and
CR->TR is only 0.044 as compared to the sirong output (0.314 and 0.641) produced
by the other two unuts in those rows. Similar behaviour was observed in the
classification of the diagonal transitions and stationary light locations, though the
smallest output produced in those conditions was 0.063 and 0.061 respectively.
Although the network can be considered to correctly generalize to these new vectors,
the results must be used with caution in the case of SCL. This is because these small

activations can easily be misinterpreted as a lack of excitation.

In summary, the large variety of visual events captured by the raw twelve
dimensional sensory data is not an appropriate representation of the environment.
The competitive learning algorithms reduce the multitude of possibilities into a
limited number of system states, represented by the activations of the competitive
units. This is a much better representation of what is occurring in the environment
(for example, left to nght motion). In the case of local representations, there are only

as many states as there are competitive units.

Based on the improved distributed representations, the connection to various
behavioural responses (for example, turn right) is leamed with supervision in a
straightforward manner. The success in learning these representations is much
greater for sensors matched to the environment, as one would expect based on
observations of animals which have evolved over long periods in a specific

environment.

5-20

Experiments with the Physical Robot

aving successfully shown that the algorithms are capable of correctly learning
H to classify both moving and stationary patterns in the simplified visual
geometries of chapter 3, the investigation next deait with the geometry of the actual
physical robot. We first examined a simulated version of the robot’s sensor geometry,
then extended that investigation to include operation of the algorithms on the real

robot hardware.

6.1 Motion Detection with the Physical Robotic Sensor Geometry

In the previous chapter the simulated sensory geometry was a symmetrical system
employing sensors with identical properties. The sensory systems of the robot,
shown diagrammatically in figure 43, is symmetric about the vertical centre line but
not relative to the horizontal. Each of the grid units within the diagram corresponds
to lcm in the real physical world. The sensor pairs are labelled with the positional

names corresponding to the spider eyes which they are representing.

The anterior medial (AM) pair of

detectors is modelled with a £15° o @
field-of-view telative to the centre PL PL
line of the sensor, which corresponds . @ M ® ®

to the robot’s OP805

phototransistors. Similarly, the

Fgure 43: Robot style sensor arrangement.

anterior lateral (AL) sensor pair

6-1

EXPERIMENTS WITH IHE PHYSICAL ROBOT
Mouon Detection with the Physical Robotic Sensor Geometry

sports a +40° field-of-view and corresponds to the L14C1 phototransistors. All four
of these sensors are oriented perpendicular to the sensor plane. The last pair of

sensors (PL) are modelled after the cadmium sulphide photoresistors which provide
a 180° field-of-view. However, unlike the other sensors this pair is rotated +90° and

-90° along its vertical axis and relative to the sensor plane.

This new geometry was first evaluated on the stationary light clustering problem
before the task of motion classification was considered. Here the input vector to the
neural network consists of the six instantaneous sensor values corresponding to
excitation from a cross shaped light arrangement comprising five sources. As with the
sensors, the properties of the grid of light sources was modelled after the real
physical system which 1t represents. In the real light-board each of the LED sources
is arranged on a regular grid with 3.5cm spacing. The side view of figure 44
Ulustrates the relative position and view of the AL and AM sensors, and the spacing

of the lights in relation to those sensors.

Based on the described sensor-

excitation geometry a training dataset ¢«Tc

was generated consisting of 1000 B -

patterns representing the sensor AL ':: /,——"" ¢ CL/C/CR
excitations produced by the five AM/PL k::~_‘_ -

sources. Each pattern vector included - ~~\‘~\\\3 BC

a small amount of additive random

Gaussian noise. In addition to the Figure 44: Side view of sensor-light board
training file, a test file was also geometry and fields-of-view.

produced containing the nine sensor

excitations corresponding to a full 3x3 grid of lights.

A six input, five output network was trained using the FSCLy algorithm. Weights
were initialized to random values around 0.5. While the network was able to learn
to cluster the training patterns for the five light positions, generalization of the
system to the four unseen corner patterns produced potentially ambiguous

classifications. The network was only able to provide a clear indication of honizontal

6-2

EXPERIMENTS WITH THE PHYSICAL ROBOT
Motion Detection with the Physical Robotic Sensor Geometry

position and produced an extremely weak response concerning vertical location. The
list of results in table 12 shows the activations obtained for these nine test patterns.
Networks successfully trained with the FSCL, and SCL algorithms gave solutions of

equivalent quality.

0.0 0.0 0.0 0.0 1.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0 0.0
0.016 0887 0015 0.024 0.058
0.016 0.024 0015 0887 0.058
0.006 0964 0005 0.008 0.017
0.006 0008 0005 0964 0.017

Table 12: Response from the FSCLy network in the dassification of positional patterns using the
robot based sensory and light board arrangements.

The system was further tested on the motion detection task. These tests were carried
out on a twelve input, eight output network again using the FSCL algorithm. The
network was found to be capable of clustering the training data but, as with the case
with the stationary tests, produced much less distinct classifications of the unseen
patterns when compared with the earlier tests of chapter 5. The activations of
table 13 show the networks response to those patterns. These values demonstrate
that the network 1s able to extract some general information concerning lateral
motion, but is incapable of providing a definitive classification of the vertical

component of motion.

The less than stellar generalization performance of the network on the stationary and
moving pattern problems is not too surprising when one considers the sensor
geometry the system has at its disposal. Due to the narrow field-of-view of the AM
detectors and their vertical position relative to the excitation sources (figure 44),
they will measure roughly equivalent light intensities for sources in the centre and
bottom regions, while producing a zero value for sources in the top region.

Furthermore, the left and right sources are also outside of the field-of-view for these

6-3

EXPERIMENTS WITH THE PHYSICAL ROBOT
Moton Detection with the Physical Robotic Sensor Geometry

0.0 c.0 0.0 0.0 1.0 0.0 0.0 00
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 00 0.0 0.0 0.0
0.108 0088 0.089 0.109 0.150 O0.348 0.198 0.108
0.109 0089 0.088 0.108 0.148 0.150 0.108 0.198
0.105 0089 0.089 0.105 0.134 0.133 0.163 0.182
0.105 0089 0.089 0.10S 0.133 0.134 0.182 0.163
0.198 0.089 0.088 0.108 0.148 0.150 0.108 0.109
0.108 0.088 0.089 0.198 0.150 0.148 0.109 0.108
0.182 0.089 0.089 0.163 0.134 0.133 0.105 0.105
0.163 0089 0089 0.182 0.133 0.134 0.105 0.105
0.006 0013 0.013 0012 0.039 0008 0895 0.006
0.019 0013 0.013 0007 0.008 0.039 0007 0.895
0.104 0.089 0.090 0305 0.132 0.131 0.73 0.a75
0.105 0.09 0.089 0.104 0.131 0.132 0.175 0373
0.895 0.013 0.013 0.006 0.008 0.039 0.006 0.019
0.007 0.013 0.013 0895 0.039 0.008 0.019 0.007
0.175 0089 0.090 0.173 0.132 0.131 0.105 0.104
0.173 009 0089 0.175 0.131 0.132 0.104 0.105

Table 13: Activations of FSCL, network in response to motion patterns.

sensors in this situation. Therefore, the only discrimination that these detectors are
able to make is between the top-centre and centre light positions. To exacerbate the
network’s difficulties in vertical discrimination, the AL detectors receive virtually
identical excitations from the top, centre, and bottom sources owing to the distance
from the sensors to the source. The final pair of sensors (PLs) are oriented such that
they are only able to detect excitations on the left or right. They produce a zero value
for excitations in the centre of the light-board. In terms of lateral movement,
however, the differential signal from the AL and PL do make it possible to identify

motion in this plane.

Based on this analysis it is clear that expecting the network to generalize to the extent
that it can detect motion in any region is unrealistic given the current sensor

geometry. However, the network does have enough information to allow the system

L]
e
EXPERIMENTS WITH THE PHYSICAL ROBOT :
Monon Detecnon with the Physical Robotic Sensor Geometry

to tdentify the presence of an excitation and to track us motion laterally. If only the
lateral degree of freedom is considered, this is the type of behaviour that a jumping

spider wiil produce.'*¥

When testing other algorithms on these training tasks it was found that SCL was also
capable of clustering the training data and was able to generalize upon that
information in order to detect lateral motion. However, the FSCLy, technique was
incapable of learning this same task. The histogram of figure 45 shows the
generalization performance of the three networks on the motion detection
experiments of the previous chapter when compared 1o those conducted with the
sensor arrangement of the robot. To be considered to have correctly generalized, the
pattern of activation values must lie above a single threshold selected across the three
test datasets (Manhattan, diagonal, and stationary). This threshold value changes
from algorithm to algonthm, but is consistent between the three tests on the same
algorithm. The values shown for the DeSieno version of FSCL represent solutions

obtained under the best possible weight initialization and algorithmic parameter

5© & < $ ol
& 6‘} -5‘9 N <F S & B
& & & & & & &
& & ¥ & E e F
100% _ _
75% - ;
‘ o —
E Manhattan
50% | Do
‘ —
Stationary
25% |
0% L
FSCLy FSCLp* scL

Figure 45: Generalization properties determined as percent of novel patterns
correctly represented. (*Best possible algorithm settings.)

6-5

6.1.1

EXPERIMENTS WITH THE PHYSICAL ROBOT
Motion Detection wath the Physual Robotic Sensor Geometry

tuning. As noted previously, without proper adjustment most FSCL, experiments

produce unsatisfactory solutions.

As can be seen from the figure, all algorithms are capable of successfully learning
appropriate representations in the first two situations involving the symmetric sensor
arrangements. For the third situation employing the robotic style sensors the FSCLg
and SCL algorithms provide closely comparable performance, while FSCL,; fails

completely under these conditions.

Learning with a Modified Robotic Sensory System

The inability of the networks to generalize to all aspects of the motion tracking
problem is a consequence of the sensor geometrv used on the robot In order to
provide the network with the tools with which to extract these properties of its
environment, it was necessary to modify the robot’s sensor apparatus in order to
provide either additional sensors or to change the characteristics of the sensors

already being used. It was this later option that was examined.

By changing the lateral orientation of the modelled photoresistors from £90° to +45°
it was found that the FSCLy algorithm was able to not only cluster the training data,
but also to generalize on this information in order to properly classify virtually all of
the test data. Notable exceptions to this were the diagonal transitions involving the
bottom source locations. However, for those transitions the network was able to
correctly identify the lateral contribution of the transition, only failing to include the
vertical component. As well, the activations produced when presented with the
unseen transitions were not as definitive as was observed when the sensor geometry
was more closely matched to the excitation geometry, though one would certainly

expect this to be the case.

The overall mean-squared-error performance of FSCL on the motion classification
experiments conducted in both this and the previous chapter are summanzed in
figure 46. As this figure shows, the learning times get progressively longer as the

geometry of the sensors deviates from that of the excitations. However, the most

=
L]
EXPERIMENTS WITH THE PHYSICAL ROBOT .
Learning in the Absence of Floatng Pont Computations o

$00.0 T T T ~r T
i Motont ~——
{ . _Mobond —
450.0 n NI
" i Moon§ ——
4000 - - - L e b
.‘
150.0 “‘l
i
SO § . ¢ T
] 3
£ 200 | “ - . B .
H
5 \

WSS .

Q.0 10.0 200 0.0 40.0 50.0
twne (epochs)

Figure 46: Relative MSE performance versus learning time for a
FSCLy network trained on the various motion detection tasks.

marked change is between the precisely matched and the remaining tests. In all cases

the learning times are quite short.

6.2 Learning in the Absence of Floating Point Computations

Throughout this thesis the simulation work presented has involved the use of floating
point computations. However, the MC68HCL11 processor, which runs the neural
learning algorithm on the real robot, does not inherently support floating point
operations. As was mentioned in section 4.3, the Interactive C programming
environment does allow for the emulation of floating point computations on this
integer processor, but this significantly retards the learning. The most desirable
option is to perform the neural learning using only integer calculations and thereby
avoid the overhead of floating point emulation. However, it is not obvious that such

an alternative is possible.

In an attempt to answer that question, a specially modified version of the FSCL,

algorithm was incorporated into the neural network simulator environment. This

6-7

EXPERIMENTS WITH THE PHYSICAL ROBOT
Learming in the Absence of Floanng Pownt Computations

algorithm accepts sensory input in the form of integer values over the range [0.255]

and produces “analog” activations in the same range via equation 14.

255x 3 (x; = w;)"

ZEe)

(14)

0, =

Based on this equation, stronger outputs correspond to smaller activation values. In
addition to using integer inputs, the weights stored by the network were also

constrained to integer values.

Training and generalization performance of this network was tested on an integer
version of the f[ive sensor motion classification problem onginally presented in
section 5.2. Again, a 1000 pattern training file was generated and presented to a ten
input, eight output network. A learning rate of £=1 was employed here resulting in
very short convergence times (2-3 epochs). It was found that the network was able
to successful cluster the training data and thereby identify the existence of the eight
basic light transitions. Furthermore, tests of generalization on the Manhattan style
transitions involving the corner lights was also performed and these demonstrated
that the integer computations did not hinder the network’s ability to properly
generalize to these previously unseen inputs. The activations provided in table 14
show the actual responses produced by the network. Tests of diagonal transitions and

stationary position yielded comparable results.

The above process was repeated using the robotic sensor geometry described in
section 6.1.1. Once again, the network was able to successfully cluster the training
data and to generalize upon that knowledge in the classification of the Manhattan
transitions and stationary position tests. Performance on the diagonal transitions was
comparable to that achieved with floating point computations, but again showed
difficulties in dealing with transitions involving the bottom row of lights. This is due
mainly to the sensor geometry and does not identify a deficiency of the algorithm

itself or in its integer based implementation.

e
a
EXPERIMENTS WITH THE PHYSICAL ROBOT |
Neural Learming tn Robotic Hardware

37 37 29 0 46 29 37
o 46 37 7 37 37 29
7 37 46 29 29 0 37
29 37 7 37 37

29 29 37 37 3z 37 0
37 37 0 29 29 46 37
46 0 37 37 37 37 29
37 37 29 46] 29 37
19 45 40 18 40 18 36
18 40 36 19 45 36 40
36 36 40 18 40 18 45
18 40 45 36 36 19 40
18 40 36 19 45 36 18
19 45 18 18 40 40 36
36 36 18 18 40 40 19
18 40 19 36 36 45 18
45 19 40 40 18 18 36
40 18 36 45 20 36 40
36 35 40 40 18 18 45
40 18 45 36 36 19 40
40 18 36 45 20 36 18
45 19 18 40 18 40 36
35 36 18 40 18 40 19
40 18 19 36 36 45 18

Table 14: Activations produced by an FSCLy network employing integer computations.

6.3 Neural Learning in Robotic Hardware

"Rsesev v s eI s ErEs T e s e e S eeetaE RS E s c s s
Having exhaustively tested the learning capabilities of the neural algorithms in
simulated environments, we were in a position to incorporate one of these algonthms
into the actual physical robot. Based on the results already reported, it is clear that
the FSCLy algorithm is the most reasonable algorithm to implement in the real
robotic system. It has consistently proven its ability to converge to an opuimal
solution, and is straightforward to implement. To this end, a version of the algornithm

was coded in Interactive C and downloaded to the robot for evaluation.

Training was conducted in a dark room to avoid the ambient light interfering with
the excitations produced by the light-board. Figure 47 shows the experimental setup

used. The robot was positioned a distance of 10.7cm from the light-board and a

6-9

EXPERIMENTS WITH THE PHYSICAL ROBOT
Neural Learmng in Robotic Hurdware

Fiqure 47: Training of the robotic system.

matte black surface was placed under it and the robot to minimize spurious
reflections. The light-board was configured to iterate (sequentially) through the
standard eight light transitions. In order to ensure that the network only trained on
the transitions and not on stationary excitations, the system performed a simple
comparison of the t and t—I sensor values and only passed these values on to the
network when they were found to differ from each other. A small threshold value was

used here to keep sensor noise from being interpreted as a transition.

The robot was trained in real-time on a total of 2000 iterations of the eight source
transitions. Following training, the resulting weight vectors were downloaded to a
PowerBook computer via the HandyBoard's serial communications interface for later
analysis. [n addition to this information, 1000 raw input vectors from the robot were
also captured and transmitted to the PowerBook. These vectors were later supplied
as inputs to the neural simulator running the integer version of the FSCLy algorithm.
The stmulated network was trained for two epochs on the 1000 pattern and the
resulting weight vectors were then compared to those received from the robot. This
comparison showed that both systems produced almost identical weight vectors. The

fact that the vectors do not match exactly is due to the fact that the two networks

6-10

EXPERIMENTS WITH THE PHYSICAL ROBOT
Neural Learning in Robotic Hardware

were not trained on precisely the same 2000 data patterns. As well, dunng training
of the simulated network it was observed that the weight vectors undergo a small
amount of cyclical oscillation. This is most likely due to the ordered presentation of

data patterns, as opposed to the random ordering use in other simulations.

Following training the light-board was reconfigured 1o allow for presentation of the
24 Manhattan test transitions. Due to the nature of the robot’s operating environment
it was difficult to directly observe the robot’s response to these test patterns. To
facilitate a more straightforward evaluation of the learned solution, the robot's raw
sensory response to the 24 test patterns was recorded and communicated to the
PowerBook. Since it was found that both the actual robot and the simulated version
closely agree, the recorded test patterns were presented to the simulated network and
the resulting activations examined. These activations can be found in table 15. As
this table shows, the networks were able to clearly learn six of the eight transitions
present in the training data, but had difficulty with those transitions involving the
top source. The generalized responses show correct lateral classification but rather
ambiguous vertical classification. This behaviour is attributed to the poor dynamic
range of the AL phototransistors. Without a significant contribution from these
sensors it is virtually impossible for the network to extract vertical information from
the observed patterns. The AM sensors provide some information owing to their

limited field-of-view, but this turns out to be insufficient.

In summary, the computational limitations of the physical mobile robot
implemented here were not responsible for the robot’s difficulties in learning the
above problems. The FSCLy learning algorithm performed well in spite of both the
limited precision and limited memory resources available. Instead, it was the sensory

system which ultimately curtailed performance.

6-11

EXPERIMENTS WITH THE PHYSICAL ROBOT
Neural Learming in Robotic Hardware

35 25 27 28 25 20 41 49
7 21 50 67 19 36 27 24
37 30 53 2 27 24 46 32
17 28 49 42 24 35 56]
13 34 36 63 20 3t 1 54

3 7 59 26 22 25 53
2 31 51 64 17 30 27 27

34 27 30 15 1 50 58
33 15 48 20 35 3 40 29
2 1) 8 33 36 E)) 45 26
33 22 45 17 34 3 50 19
34 20 53 12 34 31 46 20
30 9 8 36 35 30 35 36
30 4 7 46 35 3 32 38
28 3 24 47 32 28 19 s
27 17 16 61 i3 29 26 42
31 23 57 8 32 29 46 25
28 17 42 32 34 25 65 9
33 23 52 12 33 n 50 18
33 3 52 n 33 N 49 19
21 18 35 53 30 18 16 61
23 20 12 65 32 27 26 46
25 24 16 60 31 27 16 52
25 23 14 62 N 27 19 49

Table 15: Activations produced by an FSCLy network employing integer computations and using

true robotic sensory values.

6-12

Condusions and Future Work | 7

This thesis has examined the theoretical properties and reported experimental results
surrounding the use of competitive learning in the unsupervised extraction of visual
representations for autonomous mobile robots. The performance of four algorithms
were evaluated in the context of both simple two dimensional problems and higher
dimensional tasks involving modelled robot vision. Traditionally, neural algorithms
are compared on high performance floating point processors with virtually unlimited
memory and energy resources, and evaluated according to ultimate errors and

perhaps speed of convergence. The situation in our mobile robots (as in many other
portable computing situations) is quite different. Here it is necessary to take account
of limited precision, limited memory resources and restricted energy (battery)

budgets. Which aigorithms are most effective under these conditions is established

in this thesis for the first time (at least for input-output systems comparable to the

current robots).

In order to achieve these results, it was necessary to design and build a suitable
mobile robot, 1o select a reasonable sensory system (based on the jumping spiders
which were studied at some length), to design a suitable environmental stimulus
system (the PIC controlled light board) and to write a significant piece of software.
One example of the significant results achieved through this process was that, using
competitive leaming algorithms, the robot could properly represent stationary

patterns, having been trained only on moving ones.

CONCLUSIONS AND FUTURE WORK

With regard to the performance of the individual algorithms, standard compeutive
learning, though computationally efficient, has been shown to possess inherent
limitations in its ability to solve the vision based tasks investigated in this thesis. This
is primary a result of the algorithm’s propensity to orphan units and thereby produce
generally poor solutions. The inappropriate allocation of system resources is a direct
consequence of the simple winner-take-all nature of the approach, which provides
no mechanism to ensure effective use of all units. This situation generally arises in

response to poor initialization of the network weights.

In contrast, soft competitive learning was found to produce good solutions to most
problems, though it does require careful selection of network parameters in order to
achieve these results. Specifically, the quality of the solutions were found to be
dependent on the choice of variance used by the radial-basis-function units.
Employing a vanance decay factor helped to reduce the effects of this problem. The
most significant drawback to the use of this algorithm in applications such as mobile
robots is its complexity. A large amount of computation is required in the calculation
of network activations, owing mainly to the need te compute an exponential
function. However, it was discovered that this limitation can be reduced by
employing lookup tables in place of the exponential with no significant loss of

performance.

As well, the issue of appropriate network size was addressed in the context of SCL
and it was discovered that this algorithm was able 1o effectively distribute the
available units over the data, even in the presence of a surplus or shortage of units.
As well, it was further suggested that an optimal number of units can be selected by
intentionally supplying the network with a surplus of units at the stant of training,
and later pruning the network in order to achieve the optimal network size for the

particular data being clustered.

In addition to standard and soft competitive learning, two versions of frequency
sensitive competitive learning (DeSieno and Krishnamurthy) were evaluated and
found to produce markedly different results in contrast to the superficial similarity

of the two techniques. Through experiment it was demonstrated that both of these

7-2

CONCLUSIONS AND FUTURE WORK

algorithms are capable of learning to solve challenging vision based tasks, but that
the solutions achieved by FSCLy are generally superior and require less computation.
It was further observed that FSCLp required careful selection of the bias factor in
order to achieve acceptable solutions to these problems, making this algorithm
awkward to use in many instances. In fact, in situations where network weights are
poorly initialized, the way in which FSCL incorporates the frequency dependence
as an additive component of the distance calculation makes it incapable of locating
useable solutions. It may be possible to correct this shortcoming by introducing a

bias factor decay.

Unlike FSCLp, FSCL, was able to reliably locate good solutions to even the most
challenging test problems presented in this thesis, and only produced sub-standard
results when using very high learning rates. The fact that FSCLy includes the
frequency dependent property of the learning as a multiplicative component of the
distance calculations avoids the difficulties encountered by the FSCLy approach.
Furthermore, the simplicity of the algornithm makes it attractive for use in

computationally restricted environments.

Another unique contribution arising from this thesis was the modification of both
FSCLp and FSCLi to use analog activations in place of the winner-take-all activations
present in the original implementations of these algorithms. This conversion from
local to distributed representations allowed the networks to more correctly represent
the data distributions being modelled and thereby provide better generalization to

novel input patterns.

For experiments involving the physical robotic system, the FSCL, algonthm was
selected based on its reliability and modest computational requirements. These tests
demonstrated that the algorithm is capable of operating in environments which
provide only integer arithmetic and both limited memory and computing resources.
It was also found that the robot was able to learn a subset of the vision task presented
to it. Its failure to completely solve this task was due to limitations of the robotic
sensory apparatus and not that of the learning algorithm itself. This is not a problem

with the number of sensors selected for this robot, but rather the properties of the

CONCLUSIONS AND FUTURE WORK
Future Work

specific devices used (i.e. L14C1 phototransistors). The use of six simple sensors
provides a much more compiex and less ambiguous representations of visual scenes
than using only two. Too few sensors impoverish the representation and too many
sensors require a huge expansion of the training data. In interesting problems these
inputs are highly correlated and the complexity of the problem grows exponentially

rather than linearly in the number of sensors or input dimensionality.

What we believe is new and most valuable here is the realization that the vision of a
simple mobile robot with multiple sensors (and hence a large input dimensionality)
can be based primarily on competitive learning at all, and that this forms an efficient
representation for subsequent (supervised) learning which associates these internal
states with motor responses. This approach is quite different than that typically

employed with vision in robots.

7.1 Future Work

t s s s asecsse T T EN et s R E TNt EsceE s ce Nt as B ETsRERREase U
The robotic vision task presented in this thesis, though challenging, is only a basic
first step in the development of adaptive visual system for mobile robotics. While it
demonstrates that reasonable adaptive vision is possibie, there is still much work
which can be done in terms of both the sensory systems themselves and how these
are used by the robot. The flexibility of the light board allows for significantly more
complicated visual experiences to be investigated. This, coupled with the expansion
of the robot’s sensory environment through the introduction of additional time-
delayed inputs, would permit the investigation of much more complex visual
phenomena. Even in the absence of motion on the part of the robot, the richness of

the visual experiences that can be generated are immense.

Permitting the robot to move in response to its visual environment extends the range
of visual situations greatly. The fact that changes in the observed sensor values are

now a result of the physical motion of the robot introduces additional complexities
which need to be investigated. The ability of the robot to move has a direct impact
on what is seen by the sensors, and this can allow the robot to choose what it looks
at based on how it orients itself in the environment. Such behaviour has been

observed in spiders and other animals, including humans.

7-4

CONCLUSIONS AND FUTURE WORK
Future Work

In the context of this thesis the characteristics of the robot’s sensors have been
assumed to be fixed. However, it is well known that these characteristics can change
over time owing to a variety of effects such as temperature or simply aging of
components. The adaptability of the neural algorithms makes them capable of
compensating for these changing behaviours. However, there are a number of issues
relating to these changes which should be examined. Specifically, how quickly can

an algorithm reliably track changes 1n sensor values?

As well, through the course of this thesis it became quite clear that FSCLy is an
extremely robust algorithm. It has demonstrated an ability to solve virtually all
problems encountered. In fact, it has performed so well that the bounds of its
capabilities remain largely undetermined. It would therefore be instructive to
perform further testing on this particular algorithm in order to better identify the

extent of its capabilities.

The present work has involved an attempt to improve the design of an anificial
creature (for practical applications) by studying the anatomy and behaviour of a
simple biological animal. A more ambitious direction for future work on this subject
is to reverse this process, and to employ a hardware-software system such as that
developed in this thesis to explore the algorithms that may be at work in a real
animal. Physiologists know a great deal about the anatomy, and function at the
molecular and cell levels, of animals. Similarly, behavioural biologists and zoologists
know a great deal about the behaviour of animals in accomplishing their goals of
foraging, escaping from predators, courtship and reproduction, grooming and other
survival tasks. What is poorly understood is the high-level algorithms which connect
the physiology with the observed behaviour. The current robot can be extended in
many ways in terms of sensory systems, locomotion, computational precision,
amount of available memory, etcetera, and the environment can be extended easily
beyond the simple light board apparatus designed in this work. Experiments can be
conducted which in an abstract way mimic the behaviour of animals, and these may
be connected to comparisons among algorithms for leaming, classification, control

or other signal processing.

7-5

CONCLUSIONS AND FUTURE WORK
Future Work

Finally, in addition to the scientific findings. this thesis has resulted in the
production of the Claymore neural network simulator. While this software worked
well for the simulations conducted, there are many additions which could be
introduced to further improve its usability in future studies. These include the
addition of new neural algorithms, automated weight tracking, integrated plotting
capabilities, and the ability to simulate hybrnid networks (networks using different

algorithms in different layers).

7-6

References

(1l

12]

131
{41

51
(61

g
{8l
{9l
[10]
(1
[12]
(i3l

[14]
[15]

(16l
{171

(18]

Y. Le Cun. B. Boser §. S. Denker, D. Henderson, R. E. Howard. W. Hubbard, L. D. Jackel, “Backpropagation
Applied to Handwntten Zip Code Recognition,” Neural Computation, vol. L, pp. 541-551. 1989.

L D. Jackel, B. Boser, J. S. Denker. H. P. Graf, Y. Le Cun, I. Guyon, D. Henderson, R. E. Howard, and S. A.
Solla. “Handwnitten requirements for neural-net optical character recognition,” Proceedings of the International
Conference on Neural Networks, San Diego. CA, vol. [1. pp. 855-861, 1990.

D. Pomerleau, “Rapid Adapting Machine Vision for Automated Vehicle Steering,” [EEE Expen, vol. 11, no. 2.
pp. 19-27, 1996.

T. Gozanu. P. Ryge, P. Shea, C. Seher, R. E. Morgado. “Explosive detection system based on thermal neutron
activation,” [EEE Aerospace and Electronic Systems Magazine, vol. 4, no. 12, pp. 17-20. 1989

G. E. Hinton, Neural Networks for Industry, Toronto, 1997.

R P. Gorman, T.]. Sejnowski, “Analysis of Hidden Unuts in a Layerd Network Tramned to Classify Sonar
Targets,” Neural Networks, vol. 1, pp. 75-89, 1988.

R P. Gorman, T. J. Sejnowski, “Learmed Classification of Sonar Targets Using a Massively-Parallel Network.”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, pp. 1135-1140, 1988.

J. Hentz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computation, Redwood City, CA: Addison-
Wesley. 1991.

D. E. Rumelhart, G. E. Hinton, R J. Williams, “Learming representations by backpropagation of errors.” Nature,
vol. 323, pp. 533-536, 1986.

D. E. Rumelhart, D. Zipser, “Feature Discovery by Competitive Learning,” Cognitive Science, 9, pp. 75-112.
1985.

D. DeSieno, “Adding a Conscience to Competitive Learning,” [EEE International Conference on Neural Networks,
San Diego. Vol. L. pp. 117-124, 1988.

J. Moody, C. J. Darken, “Fast Learning in Networks of Locally-Tuned Processing Units,” Neural Computation.
1. pp. 281-294, 1989.

T. Kohonen, ~Self-Organized Formauon of Topologcally Correct Feature Maps.” Biological Cybernetics. Vol. 43,
pp. 59-69. 1982.

T. Kohonen, Self-Organizing Maps, New Yark, NY:Springer-Verlag, 1995.

C. R Schneider, Analog CMOS Circuits for Artificial Neural Networks, Ph.D. Dissertation. Dept. of Electnical and
Computer Engineering, University of Manitoba, 1991.

C. R Schneider, H. C. Card, "Analog CMOS Deterministic Boltzmann Circuits,” IEEE Journal of Solid-State
Circuits, vol. 28, pp. 907914, August, 1993.

R. 5. Schneider. Deterministic Boltzmann Machines: Learning Instabilities and Hardware Implications, Ph.D.
Dissertation, Dept. of Electrical and Computer Engineering, University of Manitoba, [993.

B. K. Dolenko, Performance and Hardware Compatibility of Backpropagation and Cascade Correlation Learning
Algorithms, M .Sc. Thesis, Dept. of Electrical and Computer Engineering, University of Manitoba, 1992.

(191
(20]
121
(22]
(23]
[24]
[25]
[26]
(27]
[28]

[29]
{301

131
(32]

[33]
[34]

[35]
(36i

(37]

[38]
(391

B. K. Dolenko, H. C. Card, “Tolerance to Analog Hardware of On-Chip Learming in Backpropagauion
Networks.” IEEE Transactions on Neural Networks, vol. 6, pp. 1045-1052, September, [995.

J. A. Dickson, Stochastic Arithmetic Implementations of Artificial Neural Networks. M.Sc. Thesis, Dept. of Electnical
and Computer Engineering, University of Manitoba, 1992.

R. K. W. Ng, Rapid-Prototyping of Artificial Neural Networks, M.Sc. Thesis, Dept. of Electrical and Computer
Engineenng, University of Manitoba, 1995.

B. Brown. Soft Competitive Learning using Stochastic Arithmetic, M.Sc. Thesis, Dept. of Electrical and Computer
Engineznng, University of Manitoba, 1998.

D. K. McNeill, Unsupervised Learmung in Analog Networks, M.Sc. Thes:s, Dept. of Electrical and Computer
Engineenng, University of Manitoba, 1993.

H. C Card. D. K. McNeill, C. R Schneider. “Analog VLSI Circuits for Competitive Learning Networks.,” Journal
of Analog Integrated Circuits and Signal Processing, vol. 13, no. 3, pp. 291-314, 1998.

S. Kamarsu, Neural Code-Excited Linear Predictuon for Low Power Adaptive Speech Coding, M.Sc. Thesis.
Dept. of Electncal and Computer Engineering, University of Manitoba, 1995.

B. Gilbert, "A High-Performance Monolithic Muluplier Using Active Feedback,” IEEE Journal of Solid-state
Circuits, vol. SC-9. no. 6, pp. 364-373, 1974.

G. K. Rosendahl, Polymorphic Computing Paradigms Realized Jor a FPD Based Multicomputer, Ph.D. Dissertation.
Dept. of Electrical and Computer Engineering, University of Manitoba. 1995.

Course Notes for 6.27°0, The MIT Lego Robot Design Course, Dept. of Electncal Engineering and Computer
Science. Massachussetts [nstitute of Technology, 1994.

F. Marun. Handy Board Specifications, Media Laboratory. Massachussettes [nstitute of Technology, 1996.

D. van Camp. T. Plate, G. E. Hinton, The Xerian Neural Network Simulator, Department of Computer Science.
unversity of Toronto, 1991.

C. M. Bishop, Neural Netwarks jur Pattem Recognition, Oxford University Press, 1995.

A. K. Knishnamurthy. S. C. Ahalt, D. E. Melton, and P. Chen, “Neural Networks for Vector Quantization of
Speech and Images.” I[EEE Journal on Selected Areas in Communications, vol. 8, no. 8, pp. 1449-1457, 1990.

S. C. Ahalt, A. K Krishnamurth, P. Chen, and D. E. Mellton, “Competitive Learning Algorithms for Vector
Quantization.” Neural Networks, vol. 3, pp. 277-290, 1990.

T. K. Moon, “The Expectation-Maximization Algorithm,” [EEE Signal Processing Magazine. vol. 13, no. 6, pp.
47-60, 1996.

R. F. Foelix. Biology of Spiders, Harvard Univesrity Press, 1982.

L. Forster, “Visual Communication in Jumping Spiders,” Chapter 5 of Spider Communication: Mechanisms and
Ecological Significance, P. N. Witt and J. S. Rovner, eds., Princeton University Press, 1982.

R R Jackson, “The Behavior of Communicaring in Jumping Spiders (Salticidae),” Chapter 6 of Spider
Communication: Mechanisms and Ecological Significance, P. N. Witt and J. S. Rovner, eds., Princeton University
Press, 1982.

J. L Jones and A. M. Flynn, Mobile Robots: Inspiration to Implementation, A K Peters. 1993.

B. Webb, “A Cricket Robot,” Scientific American, pp. 94-99, Dec. 1996.

R-2

Algorithm Source Code

A.1 Hard Competitive Learning

A.1.1 HCL Header File (HCL.h)

R R P L T TR Py

Claymore -- Hard/Standard Competitive Learning Algorithm

. .
. .
* This file contains the algorithm specific header informacion °*
* for the HCL neural network algorithm. .
. .
. .

D L T T R R R LI 2L T R T P R LT TP PP Oy
/* Algorithm Specific Resouce Numbers ©*/

edefine rHCLAlgorithmSettingsDialog 132

enun (/¢ Algorichm Settings Menu Item Numbers °/
kHCLAlgorithmEpsilon = 1
1

struct HCLaeuronData /* NEURON */
{
float rtotallnput: /* Sum of all weighted inputs to the neuron */
b

typedef struct HCLneuronData HCLneyronDaca:

struct HCLsynapseData /* SYNAPSE ¢/
{
float difference: /* Stores the value (weight-input) °*/

ki
typedef struct HCLsynapseData HCLsynapaeDaca:

struct HCLlayerData /= LAYER */
€
neuron °winner; /* Pointer tc the neuron winning the competition */
}:

typedef struct HCLlayerData HCLlayerData;

struct HCLnetworkData /* NETWORK °/
(
floac epsilon; /* Network learning rate °/
b:

typedef struct HCLnetworkData HCLretworkData:

/*** Prototypes ***/
int HCLinitNetworkData(network °“theNetwork):
int HCLinitlLayerData(layer *thelLayer):

int HCLinitNeuronData(neuron °theNeuron):
iat HCLinicSynapseData(symapse °theSynapse):
void HCLcomputeSums(necwork °*net):

void HCLupdateActivations(network *net);
void HCLupdateWeights(network ¢net):

A-1

void HCLdoEpoch (network *net. dataset °theDataset):

void HCLapplyVector (network *net. dacasec *thefataset. iant vectorNumber);

void HCLassembleStrings(network *net. char *theString):

vord HCLSetAlgorithmParamecerText(int parameterNumber. unsigned char *theText):
void ACLGetAlgorithmParameterText(int paramecerNumber, unsigned char *theText}:
void HCLResetAlgorithmParamecers():

A.1.2 HCL Algorithm Code (HCL.c)

C T L R R TR

. .
* Claymore -- Hard/Standard Competitive Learniang Algotithm .
. .
* This file contains the algorichm specific routines for the

* simulartion of the HCL neural network algorithm. It *
* contains no code specific to the canstruction of the .
* network it self. It only provides the functions necessary .
* for learning. Network coastruction routines reside :n .
* the sim.c module. .
- .

T R X T T T T R P S S XL]

sinclude <stdic.h>
¢tnclude <stdlib.h>
¢include -macSim.h°
¢include “macHCL.h*
¢include -"macGlobals.h-

R L R R Y

** HCLinitNetworkData
** This function performs any intrialization necessary whea a
** network data record Ls created. (Algorithm dependentc)

.o

P L R L L S XL T T e

int HCLinitNetworkbata{network °theNetwork)
(
1f (itheNetwork->data = malloc(sizeof (HCLnetworkData))) == NULL)

die(*Unable to allocate necessary resources -- :nitNectworkData“®);

return (MALLOC _PAILED}:

}
({HCLnetworkData *)theNetwork->data)->epsilon= 0.00L; /° Set ap initial learning rate °/
return{0):

FARIXYTE TR P2 esseesseversorrRssvETeTEIEIRRETTRSTSE

** HCLinitLayerData
** This function performts any intcialization necessary when a
** layer data record is created. (Algorithm dependent)

sesesevesnvernee

teceevtrenes eI rIE s YTEet Lt lorerreet s eI IEITORs AT ROEORITTRIIIYY
int HCLinitlayerData(layer °thelayer)

{
if {(theLayer->data « malloctstzeof(HCLlayerData))) == NULL}

die(*Gnable to allocate necessary resources -- initlLayerData~):;
return{MALLOC_FAILED) ;
}

((HCLlayerData *ithelLayer->data}-»winner = NULL:

returnt0)

T R e T Y T)

** HCLinitNeuronData
*+ This function performs any initializacion necessary when a
** neuron data record is created. (Algorithm dependent)

R R Y Y]

int HCLinitNeuronDataineuron °*theNeuron)
{
¢ {(theNeuron->daca « malloc(sizeof(HCLneuronData)!) == NULL)

{
die{*Unable to allocate necessary rescurces -- initNeuronData®):

return (MALLOC_PAILED) :

}
{ tiCLneuronData *)theNeuron-»>data) ->totallapyt =« 2.0;
return(0);

L R L R R R T R T

** HCLinitSynapseData

.e

** This function performs any inttialization necessary when a

** synapse data record is created. (Algorithm dependent)

..

essecsssssvecvesvorrrrEresrsTOTTETEITOIY

ssseveewssssconsvevrvrnTore

1ot HCLinitSynapseData{synapse *theSynapse)

‘ 1f ((theSynapse->data « malloc(sizeof (HCLsynapseData)}) == NULL)
:(nct'unable ro allocate necessary resources -- initSynapseData‘}:
return (MALLOC_PAILED)

rel':umml :

sesveorssvscaccscscsscncacnne

[weveeveearevsrsresvensertatetvertorrrreey
** HCLcomputeSums

** This function does the forward propagation through & network,

** compucring the total input for each unit and determining the winner
** for each layer. This is pass 1 of the network computacions. It
** returns the network error resulting from that operacton.

P T YT T)

eoscvsvsesevcavaveene

void HCLc S t X *nec)
{

layer *layezrPtr:

sfeuron “neuronPtr. °*winnerpftr:

synapse °synapsePrr:
floac tatalInput:

layerPtr = net->layers;
while (layerPtr != NULL) /* Traverse the layers °*/
{
winnerPtr » neuronPtr = layerPtr->neurons:
while (neuronPtr != NULL) /* Traverse the neurcas °/
{
i€ (!{neuronPtr->lock))
{
totallnput = 0.0;
synapsePtr = neuronPtr->synapseln:
while (synapsePtr !'= NULL)
4
((HCLsynapseData °) synapsePtr->data}l->difference =
synapsePrr->weight - synapsePtr->neurconln->activacion:
toctallinput += square!({HCLsynapseData v)synapsePtr->data)->difference):
synapsePtr = synapseftr->nextcin;
}
((HCLneursonData *lneuronPtr->daca)-»>totalInput = ctotallInput:
1£ ({(HCLneuronData *)winnerPtr->daca)->totallinput > totallnput)
winnerPtr = neuronPtr:
}
aeuronPtr = neuronPtr-»next:
}
net->error = ((HCLneurcnData *jwinnerPtr->data)->totallnput:
((HCLlayerData *)layerPtr->data)->winner - winnerPtr:
layerPtr = layerPtr->next;
}

PPN aE T T E eI PRI I Ire TIPS eerT e rIIseIETPIIVIITIITIVSITTIYTLIITSS
*+ HCLupdateActivations

** This function traverses the network and secs the activatiaons of all
** neurons to the appropriacte values. It is called afrer computeSums.
+ This is pass 2 of the netwurk computations.

e Y T R XY

void HCLupdateActivationsinet~ork °*net)
{

layer *layerPtr:

aeuron *neuronPtr;

layerPtr = net->layers->next: /* Skip the first layer since 1t :s the Llnput layer °/
while (layerPtr '!'= NULL) /* Traverse layers */
1
neuronPtr = layerPtr->neurons:
while (neuronPtr 'e NULL}) /° Traverse neuroas °/
4
seuronPrtr-»ractivation « 0.0: * Clear old activactions */
neuronPtrs = neuranPrr->next:
}
((HCLlayerData *)layerPtr->data)-»winner->activation = 1.0: /* Set winner's activation
layerptr = layerPtr-»mext:
}

R T T T T T T Ty T A Y T T I T
** HCLupdatewWeights
.o

** This function updates the weights for the winning unit in each layer.
ve
D L L L LT T L I T

voird HCLupdateWeights(network *net)
¢

layer *layerPrr;

synapse °*synapsePtr:

layerPtr = net->layers->next:
while (layerPtr '= NULL) /* Traverse layers */
{
synapsePtr = ({HCLlayerData ")layerPtr->data)->winner->synapsein:
while (synapsePtr '= NULL) /* Traverse synapses of winner °/
(

A\

synapsePtr->weight -« ((HCLnetworkData *)net->data)->epsilon * ((HCLsynapseData °)synapsePtr -

>data) ->difference;
synapsePtr = synapsePtr->nextin:
}
layerPtr = layerPtr->next:
3

/vrermvrresrsarerTvseTr s e rIrTTINIIEISIIIOONTISSEICOOTETETTIRERIYSTRIO TS
** HCLdoEpoch

ve

** Applies the set of input patterns to the netwecrk and calls

** computeSums, updateActivations and updateWweights to perform the

** learning.

R R Y R T

void HCLdoEpochinetwork "net, dataset *theDataset)
{

8.1 index:

neuron *theNeuron;

dataElement ®element:

/* Set pointer to the first input vector within the datasect. */
element » theDataset->data;

nec->error = 0.4 /* Clear the network error. °*/
while({element 'e NULL) /" Apply each input vector :in turn. */
index = 0:
thelNeuron = net->layers->neurons:
while(theNeuron '= NULL) /* Set layer 0 */
{ /* activations ¢/
cheNeuron->activation = element->inputpaca(index«-]: /* equal to the */
theNeuron = theNeuron->next; /* the input ./
} /* vector. .’
element « elemenc->next:
HCLcomputeSums (net}: /* Computed the weighted sums for each neuron. */
HCLupdateActivations(net): /* Update all neuron activations at once. */
tf ('cheNet->batch) /* If weights are tc be updated in batch mode, */
HCLupdateweights(net): /* then dan‘t do it here. */
}
1f (theNet->batch)} /* Update weights here when in batch mode. */

A4

HCLupdatewWeights(nec) :

E e L T R T P T R Y

jessavsssecncccsssrerren

** HCLapplyVector

..

** Applies the specified vector number to the network and calls HCLcomputeSums and
** HCLupdateActivations to actually perform the computations.

oe

Y R L)

vo1d HCLapplyVector (network °*nec. datasec *theDataset. :int vectorNumber)
{

inc index;

neuron etheNeuron:

datatlement *elementc:

/* Set pointer to the first input vector within the datasec. =/

element =« theDataset->data;

index « 0:

while{index.+ !'= vectorNumber) ‘* Locate the specified 1npuc vector. */
element = element->next:

cheNeuron = net->layers->neurons:

index = 0:
while(theNeuron !« NULL} /* Set layer @ */
{ /* activations */
theNeuron->activation = element->inputDataltindexe«}: /7° equal to the */
theNeuron = cheNeuran-»pgext: /* the input ./
1 /* vector. *s
HCLcomputeSums (net) : /* Computed the weighted sums for each neuron. */

HCLupdateActivationsinet); /* Update all neuron activations at once. */

/esvvssaersesveservesrsavesrsrsssrerresrevonesaeRseTosssaEteetsTTeRTTaY
** HCLassembleStrings

.

** Prints the algoricthm specific variables to a string and returns that string for display.
.o

R Y e L)

void HCLassembleStrings(network °net. char *theScring)
{
tf (net != NULL)
sprintf(cheString, °Hard (Standard) CL\r\rLear-..5 Rate (epsilon) « Sf\r<,
{ tHCLnetworkData *)net->data)->epsilon!:

AZAA R R R AR A2 A2 A A A A Al A R d A A A R R A A R A A R A A R A A A R A A A A X R L]
** HCLSetAlgorithmParameterText
.

** Prints the algorithm specific variables to a string and returns that string for display.

tsecssecsccsrritonrITITIETITISICLICIITICIESE svsece,

vtssesevetsracanes

void HCLSetAlgorithmParameterText(int parameterNumber, uns:gned char *theText)
{
char °theCText:

theCText = p2cstritheText):
switch (parameterNumber)
{
case kHCLAlgorithmFpsilon :
{ (iCLnetworkData *)theNet->data)->epsilon « atof(theCText):
break;

/eevsesrereTr T e T IrtsesTEe PRI ITENTITIITrT IS T RTSTRCTETO O IR ITOO s
** HCLGetAlgorithmParameterText

o

** Prints the algoricthm specific variables to a string and returns that string for display.

R L Y Y)

void HCLGetAlgorithmParamecerText(int parameterNumber. unsigned char *theText)
{
switch (parameterNumber)
{

case kHCLAlgorichmPpsilon :
sprintf((char *jtheText. *%f-, ((HCLnetworkData *)theNet->data)->epsilon):
break:
}
c2pstrii{char *)theText):

Jecsenses T T T I L R T Y T

** HCLResetAlgorithmParameters

.e

** Resets any network parameters so that learning operates in the same way it would
°° have tf the network was deleted and an identtical network comnstructed.

L L

void HCLResetAlgorithmParameters()
4
/* Por this algorithm we have nothing to do here. °/

¥

A.2 DeSieno Frequency Sensitive Competitive Learning

A.2.1 FSCL, Header File (FSCLD.h)

/eevseseusststertortareavrerereresssotresscorsneraeatesnnsessenas
* Claymore -- Frequency Sensitive Competitive Learning Algortthm
.

* This file contains the algorithm specific header 1nformation

* for the FSCL neural network algorithm.

seesssvesosssevoscasverovone,

sesovscassecncsvessssnserrey

/* Algorithm Specific Resouce Numbers */
edefine cPSCLAlgorithmSettingsDialog 130

enum (/* Algorithm Settings Menu [tem Numbers */
KPSCLAlgorithmEpsilon = 1.
kFSCLAlgorithmConscience = 2,
kFSCLAlgorithmBias = 3
1

scruct PSCLneuronDaca /* NEURON */
{
float ctotallaput; 7* Sum of all weighred inputs to the neuron °*/
float winningPrcportion: /* Praction of time the neuron wins a competition */

float biasedTotallnput: /* Sum of all wetghted i1nputs minus bias term for this neuron */

22
typedef scruct PSCLneuronData PSCLoeuronData;

struct PSCLsynapselata /® SYNAPSE */
(
float difference: /* Stores the value (weight-input) */

b:
typedef struct PSCLs mapseData PSCLsynapseData;

struct PSCLlayerData /* LAYER °*/
(

fneuron ‘winger: /* Pointer to the neuron wianing the competition independet of conscience */
neuron °*updateWinner: /* Pointer to neuron winning ccmpetition under influence of conscience °/

inc aumNeurons: /° A count of the number of neurons in the layer °/
float rpormFactor:; /° Weight normalization value */
)

typedef struct PSCLlayerData FSCLlayerDaca:

struct PSCLpnetworkData /* NETWORK °*/
(
float epsilon: /* Network learning rate °/
float proportionAdjustment. /°* Conscant decermining relative strength of conscience
floar btasPactor; /* Constant to determine bias strength ¢/
}:
typedef struct PSCLnetworkData ?7SCLaetworkData:

/e** prototypes *°**/

int PSCLinitNetworkData(network *theNecworXk):
int FPSCLinitlayerData(layer "theLayer):

int PSCLinitNeuronData(neuron *theNeuroni:
int PSCLinitSynapseData(synapse *theSynapse):

L

A-6

vord PSCLcomputeSums(network *nect):

void FSCLupdazeActivations(network °nec);

vo1d PSCLupdateWeights(network *nec):

vaid FSCLdoEpoch(network °*ner. dataset *theDataset):

void PSCLapplyVector(network *net. dataset °theDataset. int vectorNumber):

void FSCLassembleStrings{necwork °net. char °theString):

void FSCLGetAlgorithmParameterText (int parameterNumber. unsigned char °theText):
votrd PSCLSetAlgorithmParamecerText (int parameterNumber, unsigned char °theText):
votd PSCLResecAlgorithmParameters():

FSCL, Algorithm Code (FSCLD.c)

P R T T L e T T T T T PP T T T
* <Claymore -- FPrequency Sensitive Competitive Learning Algorichm
~ This file contains the algorithm spec:ific roucines for the
* simulation of the PSCL neural network algorithm. It

* contaias no code specific to the construction of the
* network it self. It only provides the funcrions necessary
* for learning. Network construction routines reside in

the gim.c module.

R e T R R T R R X X T

einclude <stdio.h>
sinclude <scdlib.h>
sinclude “macSim.h*
¢include “macfsCL.h”
sinclude ~macGlabals.h<

R S Y e Y R Y P T R T Y

** PSCLinitNetworkData
*+ This funcrion performs any initialization necessary when a
** network data record is created. (Algorithm dependent)

L T R T R T

int PSCLinitNetworkData(network ®theNetwork)
{
Lf ((theNetwork->data = malloc({sizeof(PSCLnetworkData}}} == NULL)
{
die(*Unable to allocate necessary rescurces -- initNetworkData®);
return {MALLOC_FAILED);
}

((PSCLnetworkData °)theNetwork->data)->epsilone 0.001: /* Set an init:al learning rate °*/

((PSCLoetworkData -)theNetwork->data) ->proportionAdjustment = 0.000%;
({ (PSCLnetworkData *)theNetwork->data)->biasPactor = 10.0;
return(0):

R e e L L T L N Ry P T]

** PSCLinitLayerData

.o

“* This functicn performs any initialization necessary when a
** layer data record is created. (Algorithm dependent)

secvsssvevsssvesvere

D L R T P T)

1nt FSCLinitlayerData(layer *thelLayer)
{
1f ((theLayer->data = mailoc(stzeof(FSCLlayerData)}} <= NULL}

die(“Unable to allocate necessary resources -- initLayerData’):
return (MALLOC_FAILED):
H

{(tPSCLlayerData *)theLayer->data)->winner = NULL:

({PSCLlayerData *)thelayer->data)->updateWinner « NULL:

{ {PSCLlayerData °)thelayer->data)->aumNeurons = 0:

recurn(d):

[eesnvessnsserece

** FSCLinitNeuronData

.e

** This function performs any initialization necessary when a
** neuron data record is created. (Algorithm dependent)

P EP eI CI P I P IC PP IR EIPELEICIEIIOIIIIIPITEIESIVIOCSESIOITIOOTTE

YY)

334
4

PSCLin:tNeuronData(neuron °*theNeuron)

1f ((cheNeuron->data = malloc(sizeof (PSCLneuranData;}) == NULL}

(
diel(*Unabie to allocate necessary resources -- initNeuronData®):

return(MALLOC_PAILED) :
1

({{PSCLoeurcnbData °}theNeuron-»>data)-»>totallinput = §.9:

{ (PSCLaeuronData *)theNeuron->data)->biasedTotalInput = 0.0:
({PSCLneuronData °}theNeuron->data}->winningProportion « 0.0:
1 (PSCLlayerData *)cheNeuron->layerPtr->data)->numNeuronsss:
recurn(Q);

R Ty R R L L

PSCLintcSynapseData

This function performs any initialization necessary when a
synapse data record is created. (Algorithm dependent)

T T LT Ty R Y T T Y

814
{

PSCLinitSynapseData(synapse °theSynapse)

if ((theSynapse->data = malloc({sizeof(PSCLsynapseDatal}) == NULL}

(
die(*Unable to ailocate necessary resgurces -- LnitSynapseDatac“};

recurn (MALLOC_PAILED) ;
}

recurn{):

cevesnvesonenes

P T R P T R T T R T Y 2T d eossvvevvvren

FSCLcomputeSums
This function does the forward propagatioan through a network,
computring the total input for each unit and determining che winner

for each layer. This is pass |l of the network computations. It
returns the network error resulting frocm that operation.

eerseversvessrTITeTITITCRSIT TS ITECRCCOIVITROIRE TSROV OIS E]

votd PSCLcomputeSums(network °*nec)

{

layer *layerpPer;

neuron ‘neuronPtr. °winnerPtr, c°updateWinnerprr;
synapse °*synapseftr:

float tocalInput;

layerPtr = net->layers-snext:
while (layerPtr '!= NULL) /* Traverse the layers °/

4
winnerPrr = updareWinnerPtr = neuronPtr = layerPtr-»neuyrcas;

{ (PSCLlayerData °*)layerPtr->data)->normPactor » 0.0; /v Clear the normalization value */

while (neuronPtr '= NULL) /* Traverse the neurans °*/
(
if ('(neuronPtr->lock])}
{
totalfnput = 0.0:
synapsePtr = neuronPtr->synapseln:
while (synapsePtr '= NULL)
(
({PSCLsynapseData *)synapsePtr->data)->difference =
synapsePtr->weight - synapsePtr->neuronin->activation:
totalinput -« square({(PFSCLsynapseData °*)synapsePtr->data)->difference):
synapsePtr = synapsePtr->nextlin:
)
{ (PSCLReuronData *)neuronPrr->data)->totalinput » totallnpuc:

{ (FSCLneurcnBata ®)neuronPtr->data)->biasedTotallaput - totalinput - ((PSCLoetworkData *)net-
>data) -»>btiasPactor *

({1.0 / ((FSCLlayerData *)layerPtr->data}l->numNeurons) - ({PSCLneyronData

»data) ->winningProportion):

if (({FSCLneuronData *}winnerPtr->dacta})->totallInput > totallaput)
winnerPtr = neuronPtr:

®lneuronfrr -

tf (({PSCLneuronData *)updatewinnerPtr->data)->blasedTotallnput > ((FSCLaeuronData *)neuronPtr-
>data) ->bilasedTotalInput)

updatewinnerPtr = neuronPtr:
((PSCLlayerData *)layerPtr->daca)->normFactor <« 1.0 / totallnput;

A-8

}
aeuronPtr = neuronPTr->next:

¥
net-*error e= ((PSCLneurgnlaca °*)winnerPtr->daca)->totallaput:
({PSCLlayerData *)layerPtr->data)->winner = winnerPtr:
{{FSCLlayerData *)layezPtr->data)-»>updateWinner « updatewinnerprr:
layerPtr « layerPtr->next:
¥

L T T T R T R R R T L

** rsCLupdateActivations

“* This function traverses the network and sets the activarions of all

** neurons to the appropriate values. It :3 called after PSClcompureSums.
** This 15 pass 2 of the network computations.

.o

L R R T R

void PSCLupdateActivations(necwork °net)
{

layer *layerfer:

neuron ‘neuronPtr:

floac winnerProportion;

layerPrtr = net->layers-»>next: /* Skip the first layer since it i1s the input layer */
while {layerPrr '= NULL) /* Traverse layers */
{
neurcaPtr - layerPtr->neurons:
winperProportion = ((PSCLneuronData *)((FSCLlayerData °)layerPtr-»data)->wianer->data)-
>winningPropartion: /° Save winners proportion value for later */
while (neuronPtr !'e= NULL) /°* Traverse neurons */
(
/* neuronPtr->acrivation = 0.0: /* Clear old activations */
neuronPtr->accivacion = (1.0 / ((PSCLoeuronData *)neuronPtr->data)-»>totallnput) /
{ (FSCLlayerDaca °)layerPtr->data) ->normPFactor-
({PSCLneurcnBata *)neuranPtr->daca)->winningProportion -«
((PSCLnetworkData *)net->data) ->proportionAdjustment * ¢(PSCLneuronData *)neuronPtr->daca)-
>winniangPropartion;
neuronPcr « neuronPtr->next;
}
/* ({PSCLlayerData *)layerPrr->data) ->winner->activation ¢ 1.0: /* Set winner-s activatiem °*-
{ (FSCLneuranData °*)((PSCLlayerData *)layerPtr->data)->winner->daca)->winningProportion =
winnerProportion « ((PSCLoetworkData ®)net->data)->proportiaonidjustment * (1.0 -
winnecPraportion):
layerPtr = layerPtr-rnext:
}

L R R A R R R 2

e+ rsSCLupdatewWeights

ve
** This function updates the weights for the winning unit in each iayer.

L Y P R T XX T

void PSCLupdateWeights(network °*net)
{

layer *layerptr:

synapse *synapsePtr:

layezPtr =« net->layers->next:
while (layerPtr ! NULL} /* Traverse layers °/
(
synapsePtr = ({FSCLlayerData *)layerPrr->datal->updateWinner->synapseln:
while (synapsePrr '= NULL) /* Traverse synapses of winner */
{
synapsePtr->weight -« ((FSClLnetworkData °jnet->datca)->epstlon * ((FSCLsynapseData °)synapsePrr-
»data) ->difference;
synapsePtr = synapsePtr->nextlin;
}
layerftr = layezPtr->next;
¥

R e

* PFsCLdoEpach

.
.o

** Applies the set of i{nput patterns to the network and calls FPSCLcomputeSums,

A-9

** PSCLupdateActivations and PSCLupdareWeights tc perform the learning.

sevvevoevevse D T S I T T P R X T T)

void PSClLdoEpochinetwork *net, dataset *theDatasec!
{

8.1 index:

aeuron *cheNeuron:

dataElemant “element:

/* Set pointer to the first imput vector within the dataset. °/
element e theDataset->daca:

net->error = 0.3; /* Clear the network error. °/
while{element '= NULL) /* Apply each tnput vector in turm. ~/
{
index = 0:
theNeuron = nec->layers->neurons;
while(theNeuron '« NULL} s° Set layer 4 */
{ /* activatigns */
theNeuron->activation = element->inputDaca(indexes}; /°* equal to che */
theNeuron = theNeuron->gext: /* the iaput ./
} /° vector. e}

element « element->next:

PSCLcomputeSums(net) : /* Computed the weighted sums for each neuron. */
PSCLupdateActivationsinec): /* Update all neuron activations at once. °/
tf (!theNet->batch) /* 1f weights are to be updated in batch mode, */
PSCLupdateweightsinet) : /* then don‘t do it here. */
}
1f (theNet->bacch} /°* Update welghts here when in batch mode. </
PSCLupdateWesghtsinet):

T L LT T T L T L T N T i ey
** PSCLapplyVector

e

** Applies the specified vector number to the necwork and calls PSClcomputeSums and
e pPSCLupdateActivaticns to actually perform the computations.

L R N R T R s

void PSCLapplyVector(network °*net. dataset "theDataset. int vectorNumber)
4

tac index:

neuron *theNeyron:

dataElement ‘element:

/* Set pointer to the first input vector within the datasec. °:

element = cheDataset->data:

index = 9:

while(index++ !e vectorNumber) /* Locate the specified input vector. */
element < element-»next:

theNeuron = net->layers->geurons:

index = 0:
while(theNeuron != NULL) /v Set layer 0 v/
{ /* activations °/
theNeuron->activation = element->inputData(indexe+]: /* equal to the */
theNeuron = theNeuron->next: /* the input .
} /% yector. .
PSCLcomputeSums (nec) : /* Computed the wetghted sums faor each neuron. */
FSCLupdateActivations(net); /* Update all neuron activations ac cace. */

/esensesertetanccrsectnrecrertetentssstsrI oI OTREETEREtOPPertitterobonery
v+ PSCLassemblesStrings
** Prints the algorithm specific variables to a string and returns that string for display.

L L R R TR

void PSCLassamblestrings(network *net. chaz °thestring)

if {net '= NULL)
sprincf (theString, “Prequency Sensitive CL (DeSienoj\r\riearning Racte (epsilon) = Yf\rWinner
Proportion Pactor (B) = Sf\rBias Pactor (C) = Sf\r°,
((PSCLaetworkData *)net->data)->epsilon. ((PSCLaetworkData *)nec->daca)-
>proporticnAdjustment .,
{ (PSCLaetworkData °*}net->data)->biasPaccor):
}

A-10

/eetecntoseerrrsor s resrveveteeserrrsersttseistiventtartantaerseTIreren
** PSCLSethlgorichmParameterText
** Prints the algorithm specific variables to a string and returns that string for display.

T R R Y T N T T Y T Ry e T Y

void PSCLSetAlgorichmParameterText(int parameterNumber. unsigned char °theText)
{
char *theCText:

theCText = p2cstritheText):
switch (parameterNumber)
{
case kPSCLAlgorithmEpsilon
({PFSCLaoetworkData *)theNet->data)->epsilon = atof(theCText);
break:
case kFSCLAlgorithmConscience :
({PSCLnetworkData °*)CheNet->data)->proporticaAdjustaent = atof(theCText):
break:
case kPSCLAlgorithmBias
¢ {PSCLnectworkpata °)theNet->data)->biasPactor = atof(theCText);
break:

T L LT oy e G L R IE L LT T T T YT T PO
** PSCLGetAlgorithmParameterText

..

** Princs the algorithm specific vartables to a string and recurns chat scring for display.
.o

P R

void PSCLGecAlgorithmParameterText(int parameterNumber., unsigned char °theText)
{
switch (parameterNumber)

{

case kPSCLAlgorichmEpsilon -
sprincf((char *)theText, °%f®, ((PSCLnetworkData °*)theNec->datal->epsilon);
break:

case kPSCLAlgorichmConscience :
spriacf((char *)itheText, *\f*. ((PSCLnetworkData *)theNet->cdata}->proportionAdjustment):
break:

case kPSCLAlgorithmBiass :
spriancé((char *)theText., °~%f°, ((FSCLnetworkData *)theNet->data)->brasPactor):
break;

}

c2pstr((char *)theText}):

L Y LI T T TR Y

** PSCLResetAlgorithmParameters

.e
°* Resets any nerwork parameters so that learning operates in the same way Lt would
** have Lf the network was deleted and an identical necwork constructed.

..

D R ALy

votd PSCLResetAlgorithmParamecersi)
{
/* For this algorithm we have nothing ta doc here. */

}

A.3 Krishnamurthy Frequency Sensitive Competitive Learning

A.3.1 FSCL, Header File (FSCLK.h)

P R D T Y

Claymore -- FPrequency Sensitive Competitive Learning Algorithm i(Xrishnamurthy)

.
* This file contains the algorithm specific hesder information
* for the FSCL neural network algorithm.
.
.

B R Ly T R T R T

A-11

/* Algorithm Specific Resouce Numbers */
edefine rPSCLEKAlgorithmSettingsDialog 135

enum { /* Algorithm Settings Meagu ICem Numbers */
kPSCLKAlgorithmEpsilon = L.
kFSCLEAlgorithmfairness = 2
b

struct PSCLXneuranfata /* NEURON °/
4
£loat ctotallnmpuc: ‘* Sum of all weighted toputs to the neuron */
floatr fairTaotallsput; /* rorallnput * fairness function °*/

int winningCount: ~s* Nuaber of time the geuron wins a comperitisa */
i
cypedef struct PSCLKneuronBData FSCLXneuronData;

struct PSCLKsynapseData /* SYNAPSE */
{
float difference: /* Stores the value (weight-iapuc) =/
}:

cypedef struct PSCLKSynapseData PSCLKsynapseData;

scruct PSCLXlayerData /* LAYER */
{
neuron °winner:; /* Poianter to the neuron wianing the competiticn iadependet of canscirence */
int agumNeurons; /°* A count of the number of neurons in cthe layer </
float normPactor; /°* Weight normal:zarion value ¢/
1
cypedef struct FSCLKlayerData ?7SCLKlayerData:

struct PSCLKnetworkData /°* NETNORK */
{
floac epstlion: /* Network learning rate °*/
float fatrnessractor: /°* Constant determining relat:ive strengcth of conscience */
1:
ctypedef struct PSCLKnetworkData PSCLKnetworkData;

/eve Prototypes **/
tnt PSCLKinitNetworkData(network °*theNetwork}:

tat PSCLKinjitLayerData{layer °theLayer);

int PSCLKinitNeuronData(neuron *theNeuron):

1at PSCLKinitSynapseData(synapse "theSynapsel);

void PSCLKcomputeSums(network *net);

void PSCLKupdateActivationsi{network °nect):

void PSCLKupdateWeights(network *net}:

void PSCLKdoBpoch(network *nec. dataset °theDataset);

void PSCLXapplyVector(n=twork *net. dataset *thapataser, int vectorNumber):

void PSCLKassembleStrings(netwark *mec. char *theString);

void PSCLKGetAlgorithmParameterText{int parameterNumber. unsigned char °“theText):
void PSCLKSetAlgorithmParameterText(int parameterNumber, unsigned char *theText):
void PSCLKResetAlgorithmParameters(}:

A.3.2 FSCL, Algorithm Code (FSCLK.c)

JveveeveTtrrseerenratsrcctervse IRPTIRETTIIT IR TEOTTIERIEVOYVOEVETOY
-
v+ Claymore -- Prequency Sensitive Competitive Learning Algorithm (Xrishnamurthy)
.

* This file contains the algorichm specific routines for the

* simulation of the PSCL neural network algorithm. It

* contains no code specific to the construction of the

* network it self. It only provides the functicns necessary

* for learning. Network construction routines reside in

* the sim.c module.

e R R e s

siaclude <stdio.h>
¢include <stdlib.h>
einclude “macSim.h*
¢include “macPSCLK.h*
¢include “macGlobals.h-

P D R LT R L L L L T R T LR TR P
** FSCLXinttNetworkData

** This function performs any initialization necessary when a

** network data record is created. (Algorichm dependenct)

e

ceswverorerovsrssrveoneonr

e Y L LR T T 2

A-12

Lat PSCLKinitNetworkData(network °theNetwork)
{
1£ ((theNetwork->daca = mallocisizeof (PSCLKnetworkData))) == NULL)
4
die(*Unable s allocate necessary resources -- initNetworkData®):
return (MALLOC_FAILEDI ;
}
{ (PSCLKnetworkData *)cheNetwork->data)-»>epsilon= 0.001: /* Set an initial
{ {PSCLXnetworkData *)theNetwork->daca)->fairnessfactor = 1.0:
return(C):

T Y NI R R R R R T 1)

** PSCLKinitLayerData

.

** This function performs any :initializaticn necessary when a
** layer data record is created. (Algorithm dependent)

ve

L T L R L Y R)

int PSClKinttlayerDaca(layer *thelLayer)
4
1f ((theLayer->data = malloc(sizeaf(PSCLKlayerData)}) == NULL)
{
die(~Unable to allocate necessary rescurces -- initlLayerDatac®):
return (MALLOC_FAILED) ;
1
{ (FSCLKlayerpata *)ithelLayer->data) ->winner = NULL:
({PSCLKlayerData *)|theLayer->data) ->numNeurons = @;
rezurn(Q);

P T R R R R R R R R)

** FSCLKinitNeuronData

.e

** This function performs any initializacion necessary when a
** neuron data record is created. (Algorithm dependent)

L R e A R R T R R L)

int PSCLKinitNeursnDatatneurca *theNeuron)
14
1f ((cheNeuron->data = malloc{sizeof(FSCLKneuronData))) == NULL)
{
die(*Unable to allocate necessary resources -- initNeuronData®);
return (MALLOC_FAILED):
}
{ (PSCLKneuronData *)theNeuron->data)->totallnput = 0.0:
({(FSCLKneuronData *)theNeuron->data)->farrTotallnput = 0.3;
¢ (PSCLKneuronData *)cheNeuron->data) ->winningCount ~ 0:
((FPSCLKlayerData *)theNeuron->layerpPetr->data) ->numNeuronse«:
returnio);

PR Iy T Y X

** PSCLKinitSynapseData

.e

** This functicn performs any tnit:alization necessary when a
** synapse daca record is created. (Algorithm dependent)

P R L o S L L T R e Y R

int FSCLXinitSynapseData(synapse ‘theSynapse)
(

if {(theSynapse->data = malloc(sizeof(PSCLKSynapseData))) == NULL)
(
die{-Unable o allocate necessary resources -- initSynapseData‘):
return (MALLOC_PAILED) ;
}

return(0):

jevesessvencse L R L L P T R T T TS R 2

** PSCLKcomputeSums

..

** This fuaction does the forward propagacion through a network,

** ¢camputing the total input for each unit and determining the wianer
** for each layer. This is pass ! of the network computations. It

learning race -

A-13

** returns the network error resulting frem that operation.

D L L R L L L R T R T L)

void PSCLKcomputeSumsi{network *net)
{
layer *layerPtr;
neuron *neuroaPtr. ‘winnerPrr:
synapse °®synapsePtr:
float totallinput. fairness:

layerPtr - net->layers-snext:;
while (layerPtr ‘= NULL) /* Traverse the layers °*/
{
winnerPtr = neuronPtr = layerPtr->feurons:
({PSCLKlayerData *!layerPtr->data)-»>normFactor = 0.0; /* Clear the normalization value */
while (neuronPtr 'e NULL) /* Traverse the nteurons °/
{
1f (! (neuronPrr->lock))
{
totalInput « 0.0;
synapsePtr = neuronPtr->synapseln:
while (synapsePrr '« NULL}
{
((PSCLK®Y a *)synap tr->daca) ->difference =
sSynapsePrr->weight - synapsePtr->neuraonin->activation:
totallnput - square({(PSCLKsynapseDaca °)synapsePtr->data)->difference):
synapsePtr = synapsePtr->aextin:;
]
{ {PSCLXneuronData ")neuronPtr->data) ->totallinput « totalinpurt:
fatrness = ((PSCLKnetworkData *)net->daca)->fairnessfactor * (float)((FSCLKneuronData
*)neuronPtr->data} ->winningCount;
{ (FSCLKneuronbaca °*)neuronPtr->daca)->fairTotallnput = fairness * toctallnput:
if (((PSCLXneuronData ©jwtianerPtr->daca)->fairTotallInput » ((PSCLKneuronData °}neuronPtr-
>daca) ->fairTacalInput)
winnerPtr = neuronPtr:
{ (PSCLKlayerpata *ilayerftr->data)->normfactor += 1.0 / totallsput:
}
aeurcnPtr = neuronftr->next;
]
net ->error -« ((PSCLKneuronData °)winnerPtr->data)->totallnput;
({PSCLKlayerData °)layerPtr-»>data) ->winner = winnerPtr:
layerPtr = layerPtr->next;
}

P R R R T I Y

** PSCLKupdateActivations

** This function traverses the network and sets the activations of all

** geurons to the appropriacte values. It is called after PSCLKcomputeSums.
** This is pass 2 of the network computitions.

oe

L L

vaid PSCLXupdateActivationsinetwork ®net)
{

layer *layerPtr;

aeuron “neuronPrr:

layerPtr = net->layers-»>next: /* Skip the first layer since it 1s the itaput layer */
while (layerPtr '=s NULL} /* Traverse layers °/
{
neuronPtr = layerPtr->neurons:
while (neuronPtyr != NULL) /* Traverse neurons °/
{
/* neuronPtr-»activation = 0.0; /* Clear old activaticns ¢/
neuronPtr->activation = (1.0 / ((PSCLKneuronData °*)neuronPtr->data)->totallnput) /
((PSCLKlayerData *)layerPtr->datal-»>normfactor:
neuronPtr = neurcnPtr->next:
]
/* ((PSCLKlayerData °*)layerPtr->data)->winner->activation = 1.0: /° Set winner's activation °/
layerPtr = layerPtr-»next:
1

P Ry AL L T T T T Y

/®®sensrvesevovavrnoene

** PSCLKupdateweights

** This function updates the weights for the winning unit in each layer.

A-14

oo
R L T e L R I L)

voird PSCLKupdatewWeights(network °“net)
{

layer *layerfrr:

synapse °synapsePcr:

layerPtr = net->layers->next:
while {layerPtr != NULL) /® Traverse layers */

{
synapsePty = ((PSCLKlayerData °)layerPtr->data)->winner->synapseln:

((FSCLKneuronData *){(PSCLKlayerData °*)layerPtr->data)->winner->data) ->winningCountes:

while (synapsePtr '= NULL} /* Traverse synapses of winner */
{

synapsePtr->weight -- {(PSCLKnetworkData *inet->data)->epsilon * (({FSCLKsynapseData

*)synapsePtr->daca) ->difference:
synapsePrr = synapsePtr->nextln:

}
LayerPtr -~ layerPtr-»next:
}

R L R e T T T T T Ty T P L e
** PSCLKdoEpoch
e

=+ Applies the set of Laput patterns o the network and calls PSCLRKcomputeSums.
*+ PSCLXupdateActivations and FPSCLKupdateWeights to perform the learning.

C T T R R R YT)

void PSCLXdofpochinetwork *net. dataset "theDataset)
{

ine index:

neuron *theNeuron:

dataElement *elemenc:

v/

/= Set pointer to the first input vector within the datasec.
element < theDataset->data;

net->error « 0.4: /* Clear the network error. */
while(element !e NULL) /* Apply each tnput vector in turn. */
{
index = 0;
theNeuron « get->layers->aneurons:
while(cheNeuron ‘e NULL} /* Set layer 9 ¢/
(/¢ activations */
theNeuron->activation = element-»inputData(indexe~}: /* equal tao the °/
theNeuron = theNeuron->next: /* the tnput ./
} 7/* vectar. L]
element « element->next:
FPSCLKcomputeSums (net) ; /* Computed the weighted sums for each neuron.
PSCLXupdateActivations(net): /* Update all aneuron activations at once. °/
1£f ('theNec->bacch) 7+ If weights are to be updated in batch mode. */
PSCLKupdateweights(net); /* then don‘t do it here. */
¥
1f (theNet->batch) /* Update weights here when in batch mode. */
PSCLKupdateWeights(net):

R T T

** PSCLKapplyvVector

** Applies the specified vector aumber to the network and calls PSCLKcomputeSums and

~* PSCLRKupdateActivations to actually perform the compuytations.
e T L S Ty T T T ot GRS

void PSCLKapplyVector({network °net, dataset *theDatasec. int vectorNumber)
{

int index:

neuron *zheNeuron;

datesElement *element:

/* Set pointer to the first input vector within the dataset. */
element = theDataset->data;

index = 0:
while(index++ '= vectorNumber) /® Locate the specified 1input vector. */

element = element->gext:
theNeuron = net-»layers-»neurons;

A-15

windex = 0;
while(theNeuron != NULL) +* Set layer @ */
{ /* activations */
theNeuron->activation = element->ipputDacalindexe.«i: /* equal to the °/
theNeurgn = theNeuron->next: /* the input ./
} /= vector. .’
PSCLKcomputeSums (net); /* Computed the weighted sums for each neuron. */

FSCLKupdateActivacions (nec) /* Update all aneuron activattions ac once. °/

T T Ty Y AR L IR L
e+ FSCLKassembleStrings

.o

*v pPrints cthe algorithm specific variables to a string and returas that string for display.
.e

P I T T R A L L R L T A

void PSClLKassembleStrings(network °*net, char °*thestring)
{
tf {net '= NULL)
sprincf(theString, -frequency Sensitive CL (Krish.)\rirLearning Rate (epsiion) = sf\rPairness
ractor = tfir-,
((PSCLXnetworkData °)nec->data)->epsilon. ({(PSCLKnetworkData °)nec->data)-
»farrnessfactor):
}

/eveveorescessrensnssrsssracacsvssessrTIrTIORES vecesevsscarstonessvece

** PSCLKSetAlgorithmParameterText

v prints the algorithm specific variables to a string and returns that string for display.

P L I T Y T R Y TR 2 22)

void PSCLXSerAlgorichmParamecerText(int parameterNumber. unsigned char °“ctheTexc!
4
char *theCText:

cheCText = D2CsSCritheText):
switch (parameterNumber)
{
case KFSCLKAlgorithmEpsilon :
{{PSCLKnetworkData *)theNet->data)-»epsilon e« atof(theCText):
break:
case kPSCLKAlgorithmPairness :
((PSCLKpetworkData ©)theNet-»>data)->fairnessfacter = atof(theCText):
break;

T T L T R e TR AT L L
** PSCLXGetAlgoricthmParameterText

.o

e prints the algorithm specific variables to a string and returns that string for display.
e

P L T T R R R)

void FSCLXGetAlgorithmParameterText(int parameterNumber. unsigned char °*theText)
¢
switch {(parameterNumber)
{
case kPSCLKAlgorithmEpsilan
spriatf(ichar *)cheText. “%£°, ((PSCLKnetworkData °)tfheNet->daca)->epstlon):
break;
case kPSCLKAlgorichmPairness :
sprincf ({char *)cheText, “%f~, ((PSCLKnetworkData *}theNet->daca}->fairnessfactor):
break:
}
c2pstri(char *)jtheText):

T e P LT
** PSCLKResetAlgorithmParameters

.e

** Resets any network parameters so that learning operates in the same way :t would
=+ have if the network was deleted and an identical network constructed.

.o

O T T R L L T T R LI T T

A-16

void PSCLKResetAlgorithmParameters()
{

layer *layerPtr:

neuron TneuronPrr;

layerPtr = cheNet->layers;
witile (layerPtr '= NULL) /v Traverse layers */
{
neuronPtr » layerPtr->neurons:
whtle (neuronftr '!= NULL) /* Traverse neurons */
{
¢ (PSCLKneuronData *)neurcnPtr->daca)->winningCount = G:
neuronPts = neurcaPtr->aext;
}
layerPtr = layerPtr-»pext:
t

A.4 Soft Competitive Learning Souce Code

A.4.1 SCL Header File (SCL.h)

R T T

Claymore -- Soft Competitive Learning Algorithm

.

* This file contains che algorithm specific header information
* for the SCL neyral network algorichm.
.

D L Ry S L XTI T Y T

/* Algorithm Specific Rescuce Numbers °*/
¢define rsSCLAlgorichmSectingsDialog 134

enum (/° Algorithm Settings Menu Item Numbers ¢/
kSCLAlgorithmEpsilon = 1,
kSCLAlgorithmInitialVariance = 2.
kSCLAlgorithmVarianceDecay = 3.
kSCLAlgorithmMinimumVariance = 4
}s

struct SCLaeuronbata /* NEURON </
{
float ctocallnput: /* Sum of all iaputs to the neurom */
float expTotalInput: /* Expanencial of totallaput */
float variance: ¢* Variance of the neurons RBF */

¥
cypedef struct SCLneurconData SCLaeurgnData;
szryct SCLsymapseData /® SYNAPSE °/
(
float difference: /* Stores che value (weight-iapuct) */

b
typedef struct SCLsynapseData SCLsynapseData:

struct SCLlayerData /* LAYER */
{
int numNeuyrons; /* Number of neurons within this layer °*/
float normPactor: /* Total of all exponenzial values */

1
typedef struct SCLlayerData SCLlayerData;

struct SClnetworkData /* NETWORK */
(
float epstlon: /* Network learning rate. °/
floac vartance:
float initialvariance:
float varianceDecayfactor;
float minimumvariance:
}:
typedef scruct SCLnetworkData SCLnetworkData:

fsifndef PI
tdefine PI 3.141592654
sencit £

/=ee pProvatypes °*°/
int SCLinitNetworkData(network °*theNetwork);

A-17

A.4.2

int sCLinitLayerData(layer °theLayer):

tat sCLinitNeuronData(neuron °*theNeuron):

int sCLinitSynapseData{synapse °*theSynapse):

void SClLcomputeSums(network °net):

void SCLupdaceActivarions(network °net. dataset °"theDacaset):

void sCLupdateweights(network °net):

void SCLdoZpoch(network °*net. dataset *theDataset):

void SCLapplyVector (netwark °net. dataset °"theDataset, i1nt vectorNumber}:

void SCLasseableStrings(network °net. char "theString):

void SCLSetAlgorithmParamererText(int parameterNumber. unsigaed char *theText):
void SCLGetAlgorithmParameterText(int parametezNumber. unsigned char *theText):
void SCLResetAlgorithmParameters{):

SCL Algorithm Code (SCL.c)

R L R T T T T

* Claymore -- Soft Compet:tive Learning Algorithm -

* This file contains the algorithm specific routines for the hd
* simulation of the SCL neural network algorithm. It hd
* concains no code spectfic tc the comnstruction of the -
® necwork it self. It only provides the functions necessary -
® for learning. Network comstruction routines reside in *
® the sim.c module. (Adapted from Xerion source by Sue Becker) *
. .
. .

L T Y Y R L Y Y P P P T T T]

¢include <stdic.h>
¢include <stdlib.h>
¢include <math.h>
¢include “macSim.h-
¢include °*macSCL.h*
¢include “macGlcbals.h*

/veseessvesessrsesrey
** SCLinitNetworkDaca

** This function performs any initialization necessary when a
** nectwork data record ts creacted. (Algorithm dependent)

L R L T TR RS T R T2 X

L e Ty T R R R R R e R T AL 2 L e

int SCLinitNetworkData(network -theNecwork)
{
Lf ({theNetwork->data = malloctsizeaf(SCLnetwarkDatall) == NULL)
{
die(-Unable to allocate necessary resources -- initNetworkData“®):
recurn (MALLOC_PAILED) ;
}
{ {sCLnetworkData *)theNetwork->daca)->epsilon= 0.00l:; /* Set an initial learning race
((SCLnetworkData *)theNetwork->data)->initialVariance = 0.0044:
({SCLnetworkData *)theNetwork->data)->variance = {(SCLnetworkData *icheNetwork->daca)-
>initialVariance:
{ (SCLnetworkData *)theNetwork->data)->varianceDecayPaczor = 0.0;
{ (SCLnetworkData *)theNetwork->data)}->minimumVariance « 0.0044;
return(0;};
}

PR T R T L T T T]

** SCLinicLayerData

** This function performs any initializaciocn necessary when a
¢ layer data record is created. (Algorithm dependent)

L R R R T X

tnt SCLinitlayerpDaca{layer °chelayer)
{
Lf ((cheLayer-»>data - malloc(sizeof(SCLlayerData))} =e NULL)
t
die(*Unable to allocate necessary resources -- initLayerDaca®}:
return(MALLOC_FAILED) :
}
{(SCLlayerData *)thelayer->data)->numNeurons = §:
return(0);

PR T e T]

A-18

** SCLinitNeuronData
** This function performs any 1nitializaction necessary when a
** neurcn data record is created. (Algorithm dependenc:

R P R R R R A R S R L L L 2 L]

inc SCLinitNeuronData(neuron *theNeuron)

(

/

tf (itheNeuron->data = malloc(sizeof(SCLaosuronDacta))) == NULL)
{
die(“Unable to allocate necessary rescurces -- tnitNeuronbaca®);
return (MALLOC_PALLED) :
}

((SCLoeuronData °*)theNeuron->dacal->variance = ((SCLnetworkData *)theNet->data)->1attialVariance:

{ {SCLoeurcnData *)theNeuron->daca) ->expTotallnput « 0.0;
({{SCLneuronData °*)theNeuron->data)->totalInput = 0.0:
((SCLlayerData *itheNeuron-»>layerPir->data)->nunNeuraonses:
return(Q):

D R T T R L R A L

** SCLinitSynapseData
.

** This function performs any initialization necessary when a
** synapse data record is created. {(Algorithm dependent)
e

L L e R L R R A A 2 A XL

int SCLinitSynapseData(synapse *theSynapse}

{

/

if (i{cheSynapse->data = malloc(sizeof (SCLsynapseData))) == NULL)
{
diet{~Unable to allocate necessary rescurces -- initSynapseData“):
reCurn{MALLOC_PAILED);
}

returni0):

T T T T e
** SCLcomputeSums

** This function does the forward propagation through a network.

** computing cthe total input for each unit and determining the winner

** for each layer. This is pass ! of the network computations. It

** rerurns the network error resulting from chat operatica.

L R R e R R e R AR A Ly

votd SCLcomputeSums(network °net)

{

layer *layerPtr:
neuron ‘*neuronPtr:
synapse *synapseptr;
floac totallapuc:

layerPtr = net->layers;
while (layerPtr 's NULL) /* Traverse the layers °*/
{
{({sCLlayerData *}layerPtr-»data)->normPactor = 0.0;
neuronPrr = layerPtr-»>neurocs:;
while (neursnPtr 'e NULL) /* Traverse the neurons */
{
Lf (!(neurcaPrr-»>lock)}

cotalInput « 0.0:
synapsePtr e neuronPtr->synapseln;
while (synapsePrr ‘= NULL)
{
({SCLsY Data *}synapsePtr-»>daca)->difference =

synapsePrr->weight - synapsePtr->neuronln->activation:
totalInput <= square(({(SCLsynapseData °*)synapsePtr->data)->difference);

synag tr = synap tr->nextin;

}
{ (SCLneuronData ®)neuronPtr->data)->totallnput = totallnmput:
{ (SCLaeuronfata *)neuronPtr->data)->expTotallnpuc =

exp(- totallnpuyt/(2.0*{(SCLneuronData *jneuronPrr->data)->variance)):
({{SCLlayerData °*)layerPtr->daca) ->normFactor = ((SCLneuronData °)neuronPtr->data)-

>expTotallnpuc;
}

A-19

neuronPtr = neuronPrr->next:
}

layerPtr « lLayerPtr-»next:

}

L L T T T T T R L L L R T
** SCLupdateActivations

..

** This function traverses the network and sets the activacions of all
** neurons to the appropriate values. It is called after computeSums.
** This is pass 2 of the network compurations.

L R R R e 2 L]

void SCLupdateActivations(networik *net. dataset -theDataset)
4

layer *layerPer:

aneuron ‘neuronPtr:

layerPtr = net->layers-»>next; :* Skip the first layer since i1t is the input layer °*/
while (layerPtr !'e NULL) /* Traverse layers °/
(
neurcnftr = layerPtr->peurons:
while (neuronPtr != NULL) /* Traverse neurons °/
(
neuronPtr-»activation = ((SCLneuronData *ineuronPrr->data)->expTotalInput/
((SCLlayerData *)layerPtr->datal-»normfactor: . * Set activatians */
neuronPtr = neuronPtr->next:
}
net-»error -= logi{ ({SCLlayerData *)layerPtr->data)->gormPacter /
(cow(sqrt{2.0 * PI * ((SCLnetworkData *)net->data}->variance)., ((SCLlayerData *}layerPtz-
>daca) ->numNeurons) °*
((SCLlayerData *)layerPtr->data}->numNeurcns °* theDataset->numPatterns)!:
layerPtr = layerPtr->next:
t

I I T T
** SCLupdateweights

.o

** This functtion updates the weights for the wianing unit in each layer.
e

L L A L X L X X)

votd SCLupdatewWeighcs(network *nec)
(

layer *layerePer:;

feuron ‘neuronftr:

synapse °"synapseptr:

layerPtr = net-»layers->next:
while (layerPtr !'= NULL} /* Traverse layers °*/
(
neuronPtr « layerPtr->neurons:
while (neuronPrr '= NULL) /* Traverse neurons v/
{
synapsePtr = neuronPtr->synapseln:;
while (synapsePtr !« NULL) /*® Traverse synapses °*/
{
synapsePtr->weight -e ((S5CLnetworkData °®)net->data)->epsilon °® neuronPtr->activation *
((SCLsynapsefata *}synapsePrr->data)->difference:
synapsePtr = synapsePtr->nextln:
]
neurcnPtr = pneuronPtr-»>next;
)
layerPtr = layerPtr->next:
}

ssesecereresrrPTITIITIISIIEICIRILIEITCEES

/weesessssevsrverrnrnvee

** SCldoEpoch
** Applies the set of inpuyt patterns to the network and calls SCLcomputeSums,
** SCLupdateActivacrions and $CLupdateWeights to perform the learning.

L L R R T R Y

void SCLdoFpoch(network *net, dataset °*theDataset)

A-20

int index;
layer ‘theLayer:
neuron *theleuron:

dataFlement ‘element:
float newVariance:

/* Set pointer to the first input vector within che datasec. */
element « theDatasec->daca:

aec-»>error = 0.0: /* Clear the network error. */
wihile(element !« NULL) /v Apply each iroput vectar in turm. °/
{
index = 0:
theNeuron « net->layers-»neurons:
while(theNeuron ‘= NULL) /* Set layer @ -/
{ /* activaticons ~/
theNeuron->activation = element-»inputDatalindex-+]: /* equal to the */
theNeurcn = cheNeuron->next; /* the input e
} /* vector. L%

element = element->next:

SCLcoaputeSums (nec) ; /* Computed the weighted sums for each neuron. */
SCLupdateActivations(net, theDataset); /* Update all neuron activaticns at once.
i1f (:theNet->batch} /* If weights are to be updated in batch mode. °*/
SCLupdateWeights{net): +* then don‘t do it here. °/
}
if (theNet->batch) /* Update weights here when in batch node. */

SCLupdateWNeights(net):

/* Decay the variance if necessary °/

tf (((SCLnetworkData *)theNet->data)->varianceDecayfactor '= §.0)
{

>varianceDecayfactor;

/

tf (newVariance < ((SCLnecworkData °*)theNet->data)->minimumvVariance)
newVariance » ((SCLnetworkData *)theNet->data)->minimumVariance:
if (newVariance '» ({SCLnetworkData *jtheNet->data)->variance)
(
{{SCLnetworkDaca *)theNet ->data)->vartance = newVariance:
theLayer = cheNet->layers:
while (theLayer '= NULL)
{
theNeuron = thelayer->neurons:
while (theNeuron !e NULL)
(
{{SCLneuronCaca *)cheNeuron->data)->variance = newVariance;
theNeuron = theNeuron->next:
}
theLayer = thelayer->next:
}

eecesvecsererersesr v Evs T s re e cssesareneTeesetocassasneassanRtrelb ey
=+ SCLapplyvector
.

** Applies the specified vector number to the network and calls SCLcomputeSums and
** SCLupdateActivations to actually perform the computations.

L R R T R Yy

void SCLapplyVector(network °*net. dataset °*theDaraset. int vectorNumber)

{

tac index:
neuron *theNeuron:
dataElement *element:

/* Set pointer to the first {nput vector within the dataset. °/

element = theDacaset->data:

tndex « 0;

while(index++ !'= vectorNumber) /* Locate the specified input vector. */
element = element->next:

theNeuron = net->layers->neurans:

index = 0:
while(theNeuroa '« NULL) /* Set layer 0 */
{ /% activations °/
theNeuron->activation = element->inputData(indexe«]; /°* equal to the ¢/
theNeuron = theNeuron->next: /* che input ./
} /* vector. ./
SCLcomputeSums (net) : 7+ Computed the weighted sums for each neuron. °/

SCLupdateActivationsinet. theDatasec); 7+ Update all neuron activations atc once. */

newvVariance - ((SCLnetworkData °}ctheNet->data)->variance * {(SCLnetworkData *)cheNet->data)-

A-21

PR O T T N R R T L TS

SCLassembleStrings

3

** Prints the algorithm specific var:iables to a string and recurns that string for display.

L e T T T R e R R X s

votd SCLassembiestrings(network ®net. char c°theStriag)
t
tf (net '= NULL)

sprincfithestring. “Soft Compecritive Learning\rirlearzning Rate (epsilon) = Sf\rimitial Var:iance

= Sf\rVariance Decay Pactor = tf\rMinimum Variance = Sfir\rVariance = Sf\r-,

((SCLoetworkData *)net->data)->epsilon. ((SCLnecworkBata *Inet->daca)->ipitialvariance.

{{SCLnetworkDaca °)net->data}->varianceDecayPactor.
({(SCLnetworkData °)net ->data) ->minimumVariance.
((SCLnetworkData *)net-»>data)-»variance);:

/eveseecscestetvrsrserrrssrsenteberesesorTreerTTtPerPtTse oY RTINS
®* SCLSetAlgorithmParameterText

.o

** Priats the algorithm specific variables tc a string and returns that string for display.
..

L e A R T T T Y T X]

void SCLSetAlgorithmParameterText (int parameterNumber, unsigned char *theText)
(

char *theCText:

layer *thelayer:

neuron “theNeuron:

theCText = p2cstr(theText):
switch (parameterNumber)
{
case kSCLAlgorithmPpsilon
{iSCLoetworkData *itheNet->data) ->eps:ilon « atoficheCText):
break:
case kSCLAlgorithmiInitialvariance
{{SCLnetworkpData °)tcheNec->data)->initialvariance =~ atof(theCText);
{{SCLnetworkDaca °)jtheNet->data)->variance = ((SCLnetworkData °*)theNet->data) -
>raitialVariance:
theLayer = theNet->layers:
while (theLayer != NULL)
{
theNeuron = thelayer ->aeurons;
while (theNeuron ' NULL}
{

{ {SCLneuronData ®)theNeuron->daca)->variance = ((SCLnetworkData *)theNec->data)-

»initialVariance:
ctheNeuron = theNeuron->next:
}
thetayer = theLayer->next:
}
break:
case kSCLAlgorithmvarianceDecay :
((SCLoetworkData *)theNet->data)->varianceDecayFactor = atof(theCText);
break:
case kSCLAlgoricheMinimumvariance :
((SCLaetworkData *)theNet->data)-»minimumvariance = atof(theCText):
break;

e eereeasenessss s e rtersrr et rtirs OO et terEeNsetTtecEtEsNtEsNTITIRIOITIETTY
** SCLGetAlgorichmParameterText
.o

** Prints the algorithm specific variables to a string and returns that string for display.

LA A A A I T Y A R R R R R R A R A R AR A RS R A Al Al Al d Al ad essvevevenve,
void SCLGetAlgorithmParameterText(int parameterNumber. unsigned char °theText)
: switch (parameterNumber!
i’ue kSCLAlgorithmEpsilon :
sprincf((char *)theText, °“Sf°. ((SCLnetworkData *)theNet->data)->epsilon):
break:

A-22

case kSCLAlgorithmInitialvariance :
sprincf({char *)theText. °Sf-. ((SCLaetworkData “)theNet->data)->tnitialVariancer;
break:

case ksCLAlgorithmVarianceDecay :

sprincf({char °)theText., °*tf”. ((5CLaecworkData *}theNet->data)->varianceDecayFactor);

break:
case kSCLAlgorithmMinisumVariance :
sprincf((char *)theText. °%f-, |{SCLnetworkData *)theNet->daca)->®inimumVariance);
break:
¥
c2pstr({char *)theText):

/eesessestecacatsrsrsETtTrertsTTENEesEsEsRTEOIERT IR bR Pl v b etbat e e
** SCLResetAlgorithmParamecers

.

** ResetsS any network parameters so that learning osperates i the same way 1t would
** have if the network was deleted and an idencical network constructed.

.e

T R e R R R e L R g

void SCLResetAlgorithmParameters()
{

layer -"thelayer:

neuron *theNeuron:

({SCLnetworkData *)theNet->data)->vartance = ({SCLnetworkData *)theNet->data)->1nitialVariance:

thelayer = theNet->layers:
while {(theLayer ' NULL)
{
ctheNeuron = theLayer ->neurons:
while (theNeuron ‘s NULL)
{
{ (SCLaeuronPata *)theNeuron->data)-»>variance = ({SCLnetworkData °®)cheNet->data)-
»i1nitialvariance:
theNeuran = theNeuron->next:
}
theLayer = thelLayer->next:
b

A-23

Support Hardware and Source Code

B.1 Stepper Motor Controller

B.1.1 Circuit Diagram

20 ——
{1 —
gz_—.‘ ! : *9.6v
03 — . l s
05 - — bad ‘
. i rpalme 3
08 —— | e b 25 | = ';
S : [s ¥ 3 Z’D—‘E?'“. £
' ’4 ’L‘—_ginggil_q"-"‘u_————é?-
‘ Cl e g b q2 <17 :
S 1 ~mp — i -—ds uo——qxéuo————f—oz &
g2 1P || —4q7 zh— d ¢ Qs p—o- a1
L g3 e s ! 8 = nph— qs 14 a1
———-—-—cugwb—— P—de O ep— d6 =J12p- v 22
o . —gs D iep- | —qJi1o o 19p— rZn o1 §
i i —rdePish— 1 ——du s s SNpr+—— s
———t——rq7gup— b ———q12 17p— ~d9 Wp~ —— com’
————t g e N 12 - i —dq13 ep— i
o —de b —rrq18_ sph— - =
L] e I!D—‘ R ‘;
_ it i —
ax BE IR
¢

B-1

SUPPORT HARDWARE AND SOURCE CODE

B.1.2 Stepper Controller Assembly Code

; STEPPER.ASM Modified: April 2. 1998

Program te conrol a pair of stepper motors
; based o control information suppliied by
: a HandyBoard

Cemmuntcation from the HandyBoard is received
through PORTB. HandyScard writes an § bit value
: to a data latch on PORTB tadicating the 1 bit

: speed and direction of each moror.

: Qugput to the motors is verf.-med Cthrougi PORTC
. which provides drive to the motors via a
: Darlington transistor arrangement.

processor 16C55: set processor type

constant porta = xS
constant portb = 0x6
constant partc e 0x7
constant TMR) = Oxl

constant STATUS « 0x3

constant speedreg = OxlF
conscant speedl = OxlE
constant speedr - 0xlD
constaat countl « OxIC
constant countr = 0xlB
coanstant drivel e OxlA
conscant driver < 0x19
constapt tarval = 0x1®
consctant temp = 0xO0F
constant dirl = 0x3
constant dirr = 0x7

START ORG 0x00
CLRW
TRIS partc ; Configure PORTC as output
MOovyP porta,0 ; Load the counter prescale value
ANDLW 0x?7 ; Discard unused bics
OPTION : Load the OPTION register
MOVLW 0x03 ;: Load W with left motor drive pactern
MOVWP drivel : Inicialize left drive pattern
MOVIW 0x30 ; Load W with right motor drive partern
MOVWF driver : Initialize right drive pactern
CLRF speedreg : Initialize speed to zera

CLRP speedl
CLRY speedr

Get the current speed from the HB

CRECX MOVFP poreb.0

SUBWF speedreg,0 : Test if speed is the same as before
BTPSC STATUS.2

GOTO DRIVE ; [f the same, goto drive routine

MOVY porth, 0 ;: Load the new speed value

MOVWP Speedreg ; Store the value in RAM

ANDLW 0x7

MOVWP? speedl : Save the left motor speed separacely
SWAPF speedreq.0 : Reload W with speed, swapping nibbles
ANDLW 0x7

MOVW? speedr ; Save the right motor speed separately
coMP speedreq.0 ; Load the complement of speed

MOVWF temp

ANDLW 0x7

MOVWF countl ; Inicialize left countdown counter

SWAPP tenp,d
ANDLW ox7
MOVWP countr
CLRP cemp

Inicialize right counctdown counter

DRIVE MOVFP texmp,0 ; Load last temp stored timer value
MOUWP tmrval ; Store it ian timer location
MOVF TMRG. 0 ; Get the current timer value
MOVWP texp ; Save current timer value in temp location
wovyY tmrval, 0 ; Load old timer value
SUBWP temp, 0 : Subtract old timer value from new value
BTFSC STATUS.O ; If result negative timer has rolled over
GOTO DRIVE : If timer hasn‘t rolled. loop

B-2

CHECKL MOVP

RSTIM

GOTO

end

speedl .
STATUS.

CHECXR

countl,
STATUS,

LSTIM

councl,

CHECKR

drivel.
speedreg.dirl

LBACK

drivel.
drivel,
drivel.
drivel .

CLEANL

drivel.
STATUS.
drivel.

Ox0F

drivel,
speedl,

0x7
countl

speedr.
STATUS.

1
2

1
2

1
)
8
9
L3

0

1

3

1
2

STIMOUT

countr,
STATUS.

RSTIN

countr,

L
2

1

STIMOUT

driver.
speedreg.dirr

RBACK

driver.
STATUS.
driver,

CLEANR

driver,
driver.
driver.
driver.

axro

driver,
speedr.

ox?
countr

drivel.
driver.

partc
CHECK

0

i
Q
4

L
7
3
?

1
2

[
a

SUPPORT HARDWARE AND SOURCE CODE

Load the speed value to update zero bit

; Test Lf speed is zero

If zero go on to right motor control
Load the counter to update zero DiT

; Test tf counter is zero

If zero jump to left stimulus update

; Decriment the left speed counter
: Skip to the other motor roucine

Load the current drive pattern

Check tf left is moving forward or back
If not forward do backward

Shift che drive stimulus lefc

: Zero the shifted in bit just :in case
; Check Lf 1 shifted out of lower nibble

If 1 shifred out. set low bit to 1l

shift the drive stimulus right

Check if ! shifred out of lower ntbble
If 1 shifred out, set high bit to 1
Load W with mask 000011ill

Apply the mask to che left drive value

: Reset the left counter

Load the speed value to update zero bit

: Test if speed is zero

Tf zero, skip to gutput routine
Load the counter to update zero bit

; Test Lf counter is zero

1f zero jump to right stisulus update

; Decriment the right speed counter

: Check if right is moving forward or back
;: If not forward do backward

: Shtft che drive scimulus left

; Check tf 1 shifted out of upper n:ibble

If 1 shifted cut., set low bit to 1

: Shift the drive stimuls right
: Zero the shifted tn bit just in cage
; Check Lf 1 shifted out of upper nibble

If 1 shifted out. set high bit to L

; Load W with mask 11110000

Apply the mask to cthe right drive value

: Reset the right counter

: Load the left stimulus value
: Add the right stimuls value
: Ouctput the new drive stimulus

; Go back to the start

B-3

B.2 Light Board Controller

B.2.1 Circuit Diagram

£

x

11§ 418 4]

|

SUPPORT HARDWARE AND SOURCE CODE

&=

Q1uF

oo y = Oluf
oy o

T S

jaNaNalaNeUulalal !

BNawawn-|
SP232A
T I

GO =huw hinh |

TPUOUouUy 9

1,

W02 g ! s >20
. -~ C [=
10, f“' Dl esw ‘f’i‘ ,"..Lu
. -~ Y o ~
uo o i ‘t;il o 1,3
e H =] | —pr——t—
- ; I g7 g !‘;1, hatd
ws = P —d2 wph— | = u
a2 g 33 wp—— | ——pZ,
: - 1 ——ags »p—— ! ~ .
L% B i ———Aqgs sp—— | o b11
° - L n; xp—— P i
e uwp———— -
M e —— s X Bp—— 5
sy — ———————d9 zp—————
[} ———-cw$ np———mMm—
‘:g— n}_ﬁ‘:
— wp—
150F ——qu!é b
s —en—gu »
‘-«'Tl‘._w—_c;: F3
; —awrlh_d 24
tspf ——anlt dig 3
. —~ —d1e 2
= &a\(/—#,—qa n
L0 g !
Ty
S

B.2.2 Light Board Assembly Code

: Light panel coatroller

This program reads inpuc from a serial
line at 2400 baud and stores the received
data in local memory. Once the data has

: been read in, it is displayed on the light
; panel outputs in a cyclical fashion.

processor 1l6CT74; Set processor type.

; define some constants to make the code more
readable.

constant W = 0
constant P = 1
Ce90

TOIF = 2
BRGH = 2
Z =2

SYNC = 4
TXIE = 4
TXIF « 4
CREN =~ 4
BANKB = §
RCIE = 5

constant
constant
constant
coastant
canstant
canstant
constant
constant
constant
constant

SUPPORT HARDWARE AND SOULRCE CODE

constant RCIF «
constant TXH9 =
constant RCH9 =
constant SPEN
constant GIE = 7
constant INDP = Qx00

constant STATUS « 0x01
constant FSR = Ox04

constant PORTA = 0x0S
constant PORTB = 0x06
constant PORTC = 0x07
constant PORTD = (x08
constant PORTE - 9x09
constant INTCON = O0x0B
constant PIRL e 0x0C

constant TICON = 0x10
constant OPTREG = 0x81
constant TRISA = 0x8S
congtant TRISB = 0x86
constant TRISC = 0x87

-

N w

constant TRISD 0x88
constant TRISE 0x89
coanstant RCSTATUS = 0Oxl§
constant TXREG - 0x19
constant RCREG = OxlA
constant ADCONG « Oxlp
congtant PIEL = (Ox8C
congtant TXSTATUS - 0x98
constant SPBRG = 0x99
constant ADCONl = 0x9F

constant W_TEMP = 0x20 : May alsc be AD. depending om STATUS
;. when Lacerrupt 1S received.
constant STATUS_TEMP = ux2l

constant NUMPATS =~ (x22 : Number of pacterns stored.
constant PATCOUNT = 0x2) : Current pattern being displayed.
constant TEMPL - 0x24 : Temporary storage.

constant TEMP2 < 0x25 : Temporary storage.

constant SPEED = 0xI6

constant SCOUNT « 0x27

constant PSRTEMP = OxAl

constant RCPTR= 0xA2 ; Ptr to next addr for pattern storage
constant ROWLTEMP - 0OxAJd

constant ROW2TEMP = OxA4

constant ROW3ITEMP = OxAS
constant RONATEMP = OxA6
constant ROWSTEMP = OxA7

*ee++ Pnd of Constant Definitions **°**~*

ORG 0x00
GOTO START

ORG Ix04
GOTO IHNDLR : Install interrupt handler vector.
CLR? INTCON . Initially disable all interrupcs.
: ** INITIALIZE PORT DIRECTIONS °°*
BSP STATUS, BANKB : Select Bank 1I.
CLRF TRISA i Configure PORTA as ouCputs.
CLRF TRISB : Configure PORTB as outputs.
CLRF TRISD : Configure PORTD as outputs.
CLRP TRISE ; Configure PORTE as outputs.
MOVLW B°10000000°;
MOVWT TRISC : Configure PORTC as outputs (except TX & RC).
MOVLW B-00000110° : Load Analog Port configuration Hit pattern.
MOVWP ADCONL : Set all A/D ports to digital I/0

Load TMRC configuraticn value.
Store configuration bits for TMRO.

MOVIW B°0000011:°
MOVWF OPTREG

** INITIALI2ZE SERIAL PORT °**

Load value for Baud Rate Generator.

Set Baud Rate Generator at 2400 baud.

Clear high baud rate bit and enable async mode.

MOVLW 0x19
MOVWF SPBRG
CLRP TXSTATUS

BCF STATUS. BANKB ; Select Bank 0.

MOVLW B*10010000" ; Enable serial port for receipt of 8 bit words.
MOVWP RCSTATUS:

BSP STATUS . BANKB : Select Bank 1.

j:1-1 4 PIEl.TXIE : Enable transmit interrupts.

B-S

SUPPORT HARDWARE AND SOURCE CODE

PIEl : Clear all interrupt enable bits.
BSP PIEL.RCIE : Enable receive interrupts.
MOVLW x28 . ** INITIALIZE PATTERN POINTER AND COUNTERS **
MOUNP PSRTEMP : Palnt the next pattern pointer ta start af table.
MOVWP RCPTR . POLACL new pattern storage pointer to start of table.
CLRF ROWLTEMP : Clear the new pattern temporary storage location.
CLRF ROW2TEMP H
CLRY ROWITEMP
CLRF ROWATEMP
CLRFP ROWSTEMP :
BCP STATUS , BANKB ; Select Bank 0.
CLRF NUMPATS : Zero number of patterns value.
CLRP PATCOUNT : Zero pattern count.
CLRF SPEED ; Zerc speed counter target.
CLRFP PORTA : Clear che outputs.
CLRF PORTB :
CLRF PORTC :
CLRF PORTD H
CLRY PORTE :
CLRF ADCONC : Turm off A/D converter. since we don't need 1t.

B°11000000° H

}
;

Enable global and peripheral interrupts.

DISPLAY BCP INTCON,GIE ; Disable Global Interrupt flag.
Brrsc INTCON. GIE : Ensure flag was cleared.
GaTo DISPLAY If not cleared. ctry again.
MOVF NUMPATS. F ;. Touch pattern couat to permit Zero test.
BT?SC STATUS.Z ; Test 1f pattern count not zero.
GaTo ENABLET : [f zero skip to end of display routine.
BSP STATUS . BANKB : Select Bank 1.
MOvP PSRTEMP.W : Load the stored PSR value.
MOVWF PSR : Store PSR for indirect addressing.
BTPSS PSRTEMP. 7 ; Check if PSR in Bank 0 or Bank 1.
GoTo SELO ; If PSR Bank 0 skip to Bank 0 select.
BSP STATUS . BANKB Select Bank 1.
GOoTo DISPST : Begin displaying the pattern.
SELO BCY STATUS ., BANKB : Select Bank 0.
DISPST MOVF INDP.W : Read memory pointed to by PSR.
MOVWY PORTA ; Store first line in PORTA.
B8TPSS INDP. 4 : Test Lf bit 4 13 set.
Goro PIx
asp PORTC. 4
GOTO LINE2
FIX BCr PORTC. 4
LINE2 INCY PSR.F
MOVF INDP W : Load next line.
MOVWFP PORTB : Store second/third line in PORTB.
INCP FSR.F
MOVFP INDP W ; Load next line.
MOVWF PORTD : Store third/sfourth line im PORTD.
INCF PSR, F
MOVE INDP. W : Load last line fragment.
MOVNF PORTE : Store last part of line four.
INCF PSR.F
BTPSC STATUS . BANKB : See if we are n Bank 0.
GOTO TESTEND
BTPSS PSR.7 : Test if PSR has hit the end of Bank 0.
GOTO TESTEND
MOVLW 0xAg : Load base pattern address for Bank 1.
MOVWP PSR : Store new PSR value.
TESTEND BCF STATUS . BANKB ; Select Bank 0.
INCF PATCOUNT. : Iacriment the current pattern number.
MOVP PATCOUNT ., W : Get current pattern number.
SUBWP NUMPATS. W : Subtract current pat num from total patterns.
BTPSS STATUS.Z ; Test if curreat pattern = last pattern.
GOTC SAVEPSR ; If not at last pattern. save current PSR.
CLRP PATCOUNT ; Reset pattern counter toO Zero.
MOVLW 0x28 ; Load first pattern address into W.
MOVWP PSR : Store new value in PSR register.
SAVEPSR MOVP FSR.W ; Get the current value of PSR.
asp STATUS . BANKB : Select Bank 1.

MOVWP PSRTEMP
ENABLEI BSP STATUS . BANKB

BSP INTCON.GIE
WAIT MOVP RCPTR.F

BTFPSS STATUS.Z

Save it for later use.

Select Bank 1.

Re-snable Global Interrupt flag.
Touch receive pointer to update flags.
Test if receive pointer zero

CALL CHKAPAT ; It !'zero. table has room. Check for new pattern.
|- 19 414 INTCON. TOIF : Test Lf TMRC has overflown.

GOTO WAIT : If not overflown. wait.

BCP INTCON.TOIF ; Clear overflow flag for TMRL.

CLRCNT

CHK4PAT

DISABLI

SHUPPLE

XPERPAT

STOREBG

STORESBL

BSF

BTPSC

RETURN

BT?SC

INCP

BCP

ROW1TEMP
PSR
INDP.P
STATUS.2Z

ROWSTEMP
FSR.W
STATUS.C
DISABLI
FSR.?
CHKLOOP
INTCON, GIE
INTCON.GIE
DISABLI
B'000ILIL1Ll"

8°11110000"
ROW2TEMP. P
ROW3ITEMP.F
B°0000000L"
ROWITEMP, P
STATUS.C

ROWATEMP . W
ROWITEMP.P
ROWSTEMP ., W
ROWATEMP

ROWATEMP, P
ROWATEMP, P
B°11000000"
ROWATEMP . W
ROWITEMP, P
ROWSTEMP, F
ROWSTEMP. P
B'00000LLL"
ROWSTEMP . W
ROWATEMP

ROWLTEMP

ROWSTEMP

SUPPORT HARDWARE AND SOURCE CODE

; Select Bank 0.

Increment speed counter.

: Load W with speed value.
: Subtract target count from current count.

If carry clear., count is less than target.
If we've reached the target. clear counter

; Select Bank 1.

: Wait until count equals target.
: Zero the counter.

: Update display.

°** Check for a new pattern and insert it
*** into the pattern table.

¢~* We should be in Bank ! upon entering
*** this routine.

; Get base address of temp. pattern buffer.
: Prepare for indirect ackiressing.

: Touch memory location to permit zero test.
: Test tf location was zero (empty).

: If zero we don't have a complete pattern. so return.
: Load W with top address of temp array.
; Subtract end pointer value from present value,

1 Carry set they're equal. so we have full pattern.
: We must now condense the five row bytes into four.

Increment memory pointer.

If more to test. test them.
Disable Global Interrupt flag.
Ensure flag was cleared.

If not cleared. try again.

; Load mask.

: Clear the three MSBs in row L.
: Clear the three MSBs in row 2.
: Clear the three MSBs :1n row 4.
: Test if LSB of row 2 is set.
If set. set bit S ia port 1l pattern to match.
: Clear the carry bit.

: Rotate row 2 pattern right 1 bic.

; Swap row] pattern value into W.

; Mask upper nibble of W.

: Add row 3} bits to port 2 pattern.

: Swap high and low nibbles of row 1.

: Load mask.

: Discard all but LSB of port] pattern.
; Clear the carry bit.

Rotate row 4 left 1 bit into W.

: Add row 4 bits to port J pattern.
: Swap row 5 into W.
: Store temporarily in port 4 pattern.

Rotate left 1 bit.
Rotate lefr 1 bit.
Load mask.

: Apply mask, load result into W.

;: Add row S bits to port 3 pattern.

: Rotate row 5 right 1 bit.

: Rotate row S right 1 bit.

: Load mask.

: Apply mask and place result in W.

: Store result in port 4 pattern.

: Load start address of pattern array.
: Store address in temporary location.
: Get pointer.

Prepare for indirect addressing.

: Test if address for new pattern 1s Bank l.
: If in Bank 1 go to Bank 1 storage routine.
: Load port pattern into W.

: Clear the row pattern location.

: Switch to Bank 0.

Store port pattern in temporary location.
Switch back to Bank 1.

Load the pattern table storage location.
Prepare for indirect addressing.

Switch back to Bank 0.

and display.

soe
eve
cor

: Reload port pattern from temporarly location.
; Store port pattern in final location.
: Switch to Bank 1.

Load port pattern into W.

: Clear the row pattern location.

Store port pattern in temporary location.
Load the pattern table storage location.

: Prepare for indirect addressing.

: Reload port pattern from temporary location.

B-7

STORED

[HNDLR

TESTCLR

HH R H FL

RETURN

SWAPP
scr

MOVWP
aresc

8TFSC

BCP
SWAPP

SWAPP

SWAPP
RETFIE

aTPss

BTYSS

XORWP
BTPSS

CLRP
CLRP

BSp

CLRP

CLRP
CLRF

INDF

RCPTR. P
ROWSTEMP. F
ROWSTEMP
ROWSTEMP. W
STATUS.C
XFERPAT
ROWSTEMP
STATUS . BANKB
NUMPATS, P
INTCON.GIE
STATUS . BANKB
3x80

RCPTR. W
STATUS.Z

axA8
RCPTR

w_TENP
STATUS.W
STATUS, BANKB
STATUS_TEMP
PIRL,TXI?
DO_TX
PIRL.ACIP
DO_RC

STATUS, BANKB
STATUS_TEMP.W
STATUS

N_TEMP. P
wN_TDGP. W

STATUS, BANXB
RCREG, W

0x2c

PIRL.W

TEMPL

TEMPL . W

Ox2E
PIR1,RCI?

STATUS, BANKB
PIRL.RCIF
RCREG.W
TEMPL
Br11100000°
TEMP2
TEMP2.?
STATUS.C
TEMP2.P
0x0S
TEMP2. W
STATUS.C
STOREIT
STATUS.Z
TESTCLR
TEMPL.W
B-o00IilLl"
SPEED

5°00000111"

SUPPORT HARDWARE AND SOURCE CODE

Store port pattern tn final locacion.
Incremeat table storage location poincer.
IncCrement temporary port pattern pointer.
toad end address of pattern array + l.
Subtract current address from end address.
If carry set, end was reached so copy (s done.
If not done transfer next port pactern.
Clear row 5 pattern location.

Select Bank 0.

Increment number of stored patterns.
Re-~-enable glabal taterrupcs.

Select Bank 1.

Load Bank Q rollover value.

Subtract it from table storage location pointer.

If not zero we haven't rolled over.

Leact Bank 1 base address.

: Store value for proper storage of next pattern.

** INTERRUPT HANDLER **
Save W value (May be Bank @ or 1l).

: Swap STATUS intc W to avoid modification.

Switch to BANK 0.

Save (swapped) STATUS value.

Check Lf interrupt due to empty TX Regq.
Branch to transmit routine.

Check 1f {nrerrupt due to data in RC Reg.
8ranch tao receive routine.

Ensure we are in Bank 0.

Swap original STATUS into W.

Restore original STATUS register value.
Swap W_TEMP (no modification to STATUS).
Swap original W value into W register.
Return from incerrupt.

: Select Bank 0.

Select Bank O.
Clear the interrupt flag.

: Get the received word.

Store word in temp. loc. to permit tests.

: Discard all but three MSBs.

[PEETE

Store the three MSBs.

Swap low and high nibble.

Clear the Carry Bit.

Rotate the temp register right 1 bic.

Subtract 5 from three MS8s of received word.
If Carry ts set. we have a control word.
qtherwise MSBs are data index values.

I[f Zerc bit was sec. control is speed.

If not speed d. clear c: d?

Load received word.

; Discard coatrol bits.

Save speed value.

Load mask.
And mask and command bics.
If result not zero. inteasity command.

Set number of patterns to zero.

Set next pattern to display to zero.
Load table base address.

Switch to Bank 1.

Set new pattern storage pointer to base address.

Set pattern display pointer to base address.
Clear any partially received pattern.

INTENSE

STOREIT

B8-00001111"
TEMPL.?
TEMPL.7
MOVP TEMPL,.W
BSP STATUS, BANKB

TRISC
RETURN
MOVLW ROW1TEMP
ADDWP? TEMP2.W
MOUWP PSR
MQUP TEMPL1.W
ANDLW B-000L1111°
ADDLW 3°11100000°
BSF STATUS . BANKB
MOVUWP INDP
RETURN
end

SUPPORT HARDWARE AND SOURCE CODE

Swicch to Bank 4.
Clear the output ports to clear board.

Can't simply clear Port C because it controls RC tooc.

Load mask.

Discard cop nibbie.

Ser bit for serial RX pin (RC7).
Load intensity pattern into W.
Select Bank 1.

Store new tntensity {(via PORTC) .

: Load W with temporary storage base address.

Add che pattern number to base address.
Prepare of indirect addressing.

Load original received value.

Sctrip three MSBs (coatrol/index bits).
Set cthe three MSBs of che _ictern.
Switch to Bank 1.

: Store the value.

B-9

IMAGE EVALUATION
TEST TARGET (QA-—3)

EEE

N EEE

13
L EEEECTITE

2l =l

ain Street
er, NY 1 u

1.6

14

150mm

125

© 1993, Applied Image. Inc.. All Rights Reserved

