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his thesis examines issues surrounding the class of unsupervised artificial 

neural network learmng algonthms known as cornpetitive learning. Four 

vanations of cornpetitive learning algorithrns are presented and compared. both 

theoretically and based on their relative performance in the so:ution of a nurnber of 

low and high dimensional input environments. In panicular. the thesis discusses 

efficacy of these algorithrns in Iearning appropriate representations of visual 

information in robots. Cornpansons of hard cornpetitive learntng (HCL) and soft 

competitive learnrng (SCL) in the low dimensional discrimination of Gaussian data 

clusters showed chat SCL consistently produces superior solutions. As well, the 

tendency of HCL to become trapped in sub-optimal solutions was analysed and 

found to be an inherent shoncoming of the winner-take-al1 nature of the algonthm. 

It was also found that selection of an appropriate network size rnay be achieved 

through the use of a simple pmning technique i f  a surplus of network units are 

provided to begin training. Further investigations involving HCL, SCL. and both the 

DeSieno and Knshnamurthy implementarions of frequency sensitive competitive 

learning (FSCL) show chat the latter (FSCL) produces the most consistenrly relrable 

solutions to a number of leanirng tasks. This result was obtained as a consequence 

of extensive testing involving a high dimensional data clustering problem. That 

problem concerned the adaptive identification and classification of motion via an 

array of optical senson residing o n  an autonomous mobile robot. The selection and 

arrangement of sensors used by this robot were derived from the vision systern of 

jumping spiders. Operation of  an tnteger-only version of FSCL, on the actual robotic 



hardware demonstrates the system's ability to cluster some aspects of the motion 

identification task. The rnability to completely idenrify and generalize to novel input 

patterns rs attnbuted to  deficiencies in the sensors used and is not an rnherent 

shoncoming of the algonthm. These deficiencies can be corrected through the use of 

some preprocessing of the raw sensor readings. As well, during the course of this 

study the winner-take-al1 activauons used by the frequency sensitive algonthms were 

replaced with analog activations, resultrng in significantly improved network 

generalization. 
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Introduction 

nificial Neural Networks (ANNs) have been employed to significant advantage 

in a vanety of signal and information processing applications. They are 

particularly useful in situations where a straightforward deterministic algonthm for 

the rnapping of system inputs to outputs is not available, or where such a rnapping 

is too complex to be coded effectively using traditional techniques. Examples of such 

applications include handwritten c h a r m e r  and digit rec~gni t ion ,~ l .~ l  real-time 

navigation of autonomous veh~cles . [~ '  weapons detection in airline baggage.[+.jl sonar 

target iden t i f i ca t i~n , I~ .~-~ l  malignant ce11 recognition,lil and prediction of stock 

market trends.151 These problems are difficult to solve because one can not easily 

identify the underlying propenies of the problem space which are required for the 

formulation of an analytical solution. However. i t  is generally easy to provide 

examples that are representative of the task required. Paradoxically. these types of 

tasks are frequently the kinds which humans possess a natural ability to solve, in 

spite of our  inability to describe the mechanism leading to chat solution. The strength 

of the ANN approach stems from the network's ability ta evolve an appropriate 

output response based solely on the available examples (training data) and a simple 

learning rule. It accomplishes this by extracting relevant high-level charactenstics 

from the training data. which are then used to formulate the output responses. What 

is pantcularly powerful about this parametric representation is the network's ability 

to apply this acquired higher-level knowledge to input data which it has not 

previously encountered during the training process. This property. which i s  known 



as the network's ability to generalïze. results in a very robust system, which is a 

cntical requirement for the successful solution of the above problems. 

While there are a growing variety of neural network algonthms to choose from, they 

can al1 be separared into two major categories; supervised ieamrng and u n s u p e ~ s e d  

teaming. In the case of supervised Ieamtng, the data used to train the network 

consists not only of the input data (x). but aiso an associated desired network 

response or target output (1) .  ' Through the learning rule the network adjusts its free 

paramerers, the network weights ( w ) ,  in an attempt to produce the desired input- 

response association. Once training is complete the neuraI system is theoretically 

able to emulate the behaviour of the actuai system which originally generated the 

outputs (t) from the inpurs (x). Figure L gives a block diagram representation of this 

arrangement. The true mesure  of the quality of the resulting neural rnodel is how 

faithfully it predicts the response of the original system for values of the inputs which 

were not part of the training data. If the ANN performs well in this regard it may then 

be used as a reasonable substitute for the original system. such as a human betng. 

One example of where such a network has been used very successfully is in the 

automated soning of mail by reading the handwritten postal codes on envelopes.''' 

The Backpropagation learning algorithmtut was used in this application and is the 

most common and widely studied example of supervised learning. 

ANN System 
C- 

---ml W 
- Y  

Figure 1: Cenerative model of a neural network. 

1. Vccror quantitics are printtd in bold type. whilc xalar quanotics arc pnntd in plain rypc. 



While s u p e ~ s e d  algorithrns are quite powerful. they can only be used in situations 

where one is able to assemble a set of training data showing the desired input-target 

associations. Yet. in many cases it ts not known in advance what these associations 

should be, or  frequently even how many network nodes are required to best 

represent the data. in spite of these handicaps there exists an underlying structure to 

the data which. if discovered. can be used to formulate a mode1 of the system chat 

produced it. Unsupewised leaming algorithms are capable of dotng exactly that. 

They attempt to evolve a high-level representation by identifying global statistical 

properties of the data distribution. These properties generally manifest themselves as 

chsters or  groupings of data points in the input space and as a result the algorithms 

a:e sometimes referred to as clustering algorithms. Once identified. these higher level 

features may be used directly or  rnay serve as inputs to additional processing stages. 

This thesis examines a particular class of unsupervised leamtng algorithms known as 

comperinve learning. The task of these algonthms is to compress a cornplex, posstbly 

high dimensional, sensory space into a simpler representation consisting of a limited 

set of system States. 

The central problem explored rn this thesis is the unsupervised learning of efficient 

representations of visual environrnents encountered by simple mobile robots. The 

resuits are also believed to be relevant to other portable ernbedded computing 

applications. A vanety ol competitive leaming algonthms are investigated and 

compared for their suitability in this task. Several modifications to some of these 

algonthms were made in order to improve their performance or  reduce their 

computational complexity. However, the pnmary contnbution of this thesis was not 

in improving these algorithms but in evaluating their usefutness in these 

applications. This process was guided by reference to the vision system of a simple 

animal. in an effort to exploit the extensive experimentation which has already been 

performed by biological evolution. The vision system of a jumping spider was chosen 

for its appropriate input dimensionality, quality of visual sensors, and estirnated 

computational capacity. 

tt is generally believed that most of the computational burden in vision is associated 

with properly representing the data. rather chan classifying it for behavioural 



responses. The raw visual data obtained via the robot's sensory apparatus ts an 

rmpoverished representation of the visuat scene. A multitude of raw sensory vectors 

actually correspond to the same environmental situation. with their differences 

resulting from simple shifts in the image, time delays, or intensity vanations for 

example. The tltsk of the unsupenrised learning 15 to cluster similar situations into 

the same system state in the new feature space. These learned States of the system are 

known as visuaI representations, and are a prerequisite to any subsequent supervised 

leaming. Based on this dimensionally reduced representation the mobile robot then 

performs a variety of stereotyped behaviours in association with each state. 

As a resuit of their importance ro the vision task. adaptlve vrsual representations 

obtained without supervision using anificial neural leaming became the central focus 

of this thesis. 

1.1 Corn petitive Leaming 
m . . . . . . . . . . . .  w . . . . . . . m . . m . ~ m . . . . . ~ . . m m . m o . m m . . m . . ~ . .  

As the name would suggest. cornpetitive learning (CL) networks drive the leaming 

process by employmg sorne form of cornpetition between the vanous uniu wthin the 

network. There are a number of vanations of competitive leaming with the most 

notable being standard or hard competitive learning (HCL). soft corn petitive leaming 

(SCL). frequency sensitive competitive learning (FSCL), and self organizing feature 

maps (SOFM). While al1 of these rnethods are closely related. there are some 

important differences which affect the way in which these aigorithrns extract 

information from the input data and how that information is used to guide the 

learning process. 

1.1.1 Standard or Hard Cornpetitive Leaming 

The most basic type of competitive leaming is standard or hard competitive 

learning.~LC'~"~ 1t attempts to motivate the learning process by enforcing strict 

cornpetition between units in the network. Figure 2 illustrates the typical structure 

of an HCL network. The actuai training of the network is a refatively straightforward 

process. For each input data pattern (x), each unit cornputes the distance (hJ 

between that pattern and the unit's weight vector (wJ .  A variety of distance rnetrics 

rnay be used here. including the Euclidean distance, Minkowski metric, and 



Mahalanobis For the purpose of this discussion we will use the simple 

Euclidean distance as given in Equation 1. 

The unit w t h  the srnaIIest h, is designated as the winning unit ( i * )  for that panicular 

input vector and sets its output (activation) high (1). Ali the other un iu  which lost 

the competition set therr activations low (either O o r  -1). The wnn ing  unit then 

updates its weights in order to reinforce the association between iuelf and the input 

pattern. This is accomplished by adjusting the weight vector by a small amount in 

the direction of the input pattern. 

Since only the winning unit performs a weight update this learning method is 

sometimes known as winner-tahe-al! ( W A )  learning. The symbol e in equation 2 is 

known as the learning rate and controls the magnitude of the weight adjustment. It 

is fixed at a small value pno r  to  the s t an  of training and usually remains unchanged 

through the entire learning procedure. The selection of E can have a significant 

impact on the overall success of the leaming process. If E is too large the network will 

make large weight adjustments for each input pattern. Since the objective is to  extract 

global features, this places too much emphasis on any one pattern. Instead it is 

desirable that only small werght changes be made, thus permitting the overall trend 

in the data to emerge. A Iesser problem is selecting too small a leaming rate. resulting 
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Figure 2: Tpical stmcture of a cornpetitive leaming network. 



in very small weight changes and long leaming times. A value on the order of 

E =0.001 is typically used. 

If one considers this entire process geomecncally with the weights nonnalized to untt 

iength such that 

and the inputs normaiized in a similar lashion. then both the inputs and outputs can 

be represented as  points on a unit hypersphere. The winning unit in any competition 

wll be the unit whose weight vector is closest to the current inpur vector. Under 

these conditions minimizatron of the Euclidean distance is equivalent to rnaximizing 

the inner product w ,  - x. 

The greatest advantage of the HCL algorithm is its simplicity. It does. however. have 

senous limitations under cenain circumstances. It is common practice to begin the 

training process by first initializing the network weighrs ro random values. In some 

situations this randomization will result in a unit being positioned well outside the 

bounds of the input data distribution. Figure 3 illustrates such an initia1 distnbution 

in a two dimensional data space. Clearly the unit at (0.5.0.5) is closer to ail of the 

Figure 3: Possible data Gstribution showhg complex dusten and two weight vecton. 



data points and. as a result. will win the competition for every point. Since only the 

winning unit updates its weights the unit at (1.3.1.3) will never rnake a weight 

adjustment. It will. therefore. never become a participating rnember of the network's 

solution and is effectively orp haned. As a consequence the network will fail to Leam 

any useful discrimination of the input patterns. Fortunateiy. several aIternatives exist 

which can address the orphaned untt problem. 

1.1 2 F requency Sensitive Cornpetitive Leaming 

Frequency Sensitive Cornpetitive Learning (FSCL) attempts to correct HCL's 

shortcornings by introducing a conscience rnechani~ml~~l into the competttion. This 

rnechanism has the effect of reducing the likelihood that a unit will win subsequent 

cornpetitions each tirne it wins the current competition. This elirninates the situation 

where only one unit wins for a large majority of the training cases. Under this scheme 

the unit closest to a parricular data point will win initially, but eventually. due to the 

conscience penalty, the unit on the penphery of the data will later w n  and be rnoved 

closer to the data. Eventually it wtll be drawn close enough to the data that it will 

w n  a significant percentage of the time and will then contribute in a reasonable 

rnanner to the solution. 

The FSCL algorichm itself is similar to HCL in tu initial stages. As with HCL the FSCL 

network first computes the Euclidean distance between the input and the weight 

vectors and determines the winning untt. The activation of this unit is again set high, 

and al1 others low. 

However. unlike HCL the winning unit may not necessarily be the unit which 

perfonns a weight update. The network firsr computes a bias (bJ for al1 units ustng 

the equation 



Here N is the nurnber of units panicipating in the competition, and C is a bias factor 

which determines the distance a losing unit m u t  reach in order to enter the solution. 

The value p, is a m e s u r e  of the fraction of tirne the unit i wins a competition. and 

can be computed using the following equation. 

now oM old 
P, = P ,  +WY, - P, 

where O c B cc 1. The value of 0 determines how sensrtive the conscience mechanisrn 

1s to the winning of a single competition. As was the case with the leaming rate. a 

small 8 value should be setected in order to ensure that the overall statistics of the 

data distribution are used to drive the cornpetition. B should not be so large that any 

single vector of the dataset unduly influences the competition. a result of his 

investigations. DeSienolLL1 recommends a B value of 0.0001. 

The bias value b, is now used in the calculation of a new winning unit such that 

Having chus determined the winner under the influence of the conscience penalty, 

the weights of that unit are updated according to equation 2. It should be noted that 

the value z, is only used in determining which unit's weights are to be updated. The 

output activation of the units is still determined by equation 9. 

A related vanant of FSCL has been proposed by Krishnamunhy et al.i'2.331 it is a 

slightly simpler method which introduces the frequency dependence into the 

distance computation by rnean of a faimess function €(US. 

The faimess function is a non-decreasing function of u,, where u, is a count of the 

number of times unit i has succeeded in winning a cornpetition. A typical choice for 

this function is F(uJ = u,. A s  before. the unit having the srnaIlest distance h,  is selected 

as the winner i*  and its weights are then updated according to equation 2. 



Unfonunately. the propeny of FSCL which rnakes it useful in helping to  ensure the 

participation of al1 units is precisely the rnechanism which introduces an  additional 

problem. Use of the algorithm w l l  result in the units adjusting their weights such 

that each unit wins an approximately equal proportion of the competitions. 

However. one can easily msualize situations where some of the data ciusters are more 

densely populated than others. which shouid ideally result tn some units winning 

more often in those clusters than in others. By requinng al1 units to win an 

approximately equal number of competitions the network is discouraged from 

assigning a single unit to a dense cluster, which would be the mosi appropnate 

solution. 50 while FSCL is able to achieve better performance than HCL. it does not 

always produce the best possible solution. 

Soft Cornpetitive Learnf ng 

An algorithm which comects for HCL's orphaned unit problem. and also avoids the 

uniform frequency restriction of FSCL. is soft cornpetitive leaming (SCL). SCL 1s 

another vanation on the basic HCL network. but with this algorithm there is no 

single winner associated with a particular input vector. lnstead al1 unirs compute an 

activation based on their distance from the current input pattern, and learning 

corresponds to an on-line version of the Expectation Maximrzation (EM) 

algonthrn.lJs' Radial b a i s  function (RBF) ~ n i t s l ' ~ - ~ l  are cornmonly used in SCL 

networks instead of the linear units used in HCL and FSCL. Here the activation 

function of the RBF unit is a normalized Gaussian and is calculated using the 

folIowing equation: 

As seen previously, x represents the input pattern vector and w the network weights. 

Here the weight vector w identifies the mean of the Gauwian activation function and 

the parameter a, controls the variance or  spread of the function. Both w and o, are 

typically detennined by the learning process. In the case of a symmetric Gaussian. o, 

is a diagonal matrix which can be decomposed to a, = cJ. where I is the identity 



matnx. and c, are constants. Use of symmetnc Gaussians 1s not strictly required and 

in many cases a non-symmetnc Gaussian may provide a better fit to the data. In those 

situations o becomes a full covanance matnx. This wtll obviously lncrease leaming 

time, since it introduces additional degrees of freedom which the network m u t  now 

explore in searching for a solution. A possible alternative to using the full covanance 

matrix is to provide additional symmetric units to the network. thus allowing it to 

cover an elliptical data cluster with several symmetric Gawsians. instead of a single 

non-syrnrnet nc  function. 

Special attention should be drawn to the fact that with SCL the activations are now 

analog quantities. fhese  analog outputs represent the degree of partial rnembership 

which the input vector x has within the receptive fields of each unit. O r  ahematively, 

it identifies the extent CO which each unit is responsible for the data point x. This 

technique of encoding the input vector as an aggregation of the network's analog 

activations is known as a distribured representation. Thus the result of the SCL 

algorithm is to find the optimal distributed representation of the input. This is in 

contrast to standard competitive Iearning where a local representation is obtained in 

which only a single unit is activated at  one time for a given input vector. The weight 

update equation for SCL is simitar to that given for HCL in equation 2, with the 

exception that all units perform weight updates in proportion to their activation. 

As a consequence of this procedure. every unit learns for every input pattern but to 

varying degrees in relation to that unit's activation. Geometncally the units whose 

weight vectors are closest to the input vector rnake the greatest move towards the 

input. while those farther away move only slightly closer. This is opposite to the 

weight updating used by HCL and FSCL (equation 2) which makes larger weight 

updates when the winning units are farther from the input point. 

Under the SCL scheme. no single unit can end up in the situation of rnonopoiizing 

the inputs at the expense of al1 other units. Every unit will eventually panicipate in 

the solution even if i ts weights were initialized well outside the data distribution. 



This process may take quite a long training time in sorne cases. but al1 the unlts are 

guaranteed to eventually be used and not orphaned. 

1.1 A Kohonen Self-Organlzing Feature Maps 

A founh algonthm, vrhich is related to CL. is the self-organizing feature map (SOFM) 

developed by Kohonen.'13.'+' This algorithm is one of the first and pro bably the most 

well known example of u n s u p e ~ s e d  Iearning. I t  has been widely studied in the 

literature and an updated examination of the area has recently been made by 

Kohonen.l1+' As a result. the present work will not investigate the properties of this 

algorithm in depth. However. the fact that SOFMs share some similanty t a  HCL and 

SCL make them wonh mentioning briefly. 

The three CL algorithms discussed above place no special significance on  the 

ordering of the units. They are only interested in identifying the features within the 

data and are unconcemed with which units ultimately represent which features. 

SOFMs, in contrast. attempt to evolve a topological representation of the  input data 

in an unsupervised manner. The units themselves are typically arranged in a two 

dimensional map. though other arrangements are possible. The learning process 

begins by once again determining the unit with the smallest Euclidean distance 

between its weight vectorand the input vector. and this unit is selected as the winner. 

However, unlike HCL and FSCL where only one unit is updated, the SOFM updates 

both the winner and a11 those units in a local neighbourhood o l  it. As leaming 

progresses the neighbourhood slowty shrinks until. in the end. only the winning unit 

is being updated. This procedure ensures that al1 units achieve some degree of 

adaptation, with the selection of the neighbourhood function and its decay rate being 

critical factors in ensunng that al1 units panicipate in the solution. The SOFM 

process allows for entire regions of the map to becorne initially tuned t o  panicular 

inputs and t his tuning is then gradually refined as the neigh bourhood shrin ks. In the 

final solution logically adjacent inputs will activate neighbounng outputs. thus 

indicating a topological correlation. 



In al1 learning algonthms there exists an objective function which dnves the leaming. 

In the case of HCL. FSCL,, and FSCh the objective is the minimization of the 

squared-error between the weight vectors and a data vectors. This expression 1s given 

in equation 11. where 1 vanes over the number of units in the network layer (NI. 

This error is summed over al1 inputs (x) for which the unrt is considered the wmner. 

Thus the lower the total distonion between the inputs and weight vectors, the betcer 

the performance of the network. 

The objective function used by SCL is quite different than the other algonthms owing 

to the probabilistic nature of the RBF units. This network stnves to rnaximize the 

probability that the units are responsible forgenerating the input data values. As will 

be dernonstrated in chapter 3. this may result in markedly different placement of the 

weight vectors. The error rneasure used here is given in equation 12. Here h varies 

over the number of patterns in the training set (Pl, and N is the number of units in a 

layer. 



Arîif iaal Neural Simulator 

S oftware simulat 

algonthms and 

.ion is the primary method used in the study of neural network 

their applications. The preliminary expenments conducted in 

this thesis were performed using the Xenon artificial neural network stmulator 

developed by the Anificial Intelligence Laboratory at the University of Toronto. Thar 

sirnulator was produced in the early 1990s pnmarily for that group's own research 

activities. but it was also made available to the general neural network community. 

Due mainly to the high amount of computation required in simulating complicated 

algorithrns. this software was only available for the UNIX computing environment. 

LU a consequence of the evolution and upgrading of the UNIX system used in our  

Iaboratory. Xerion became nonfunctional during the early stages of this study. At that 

same time. support and development of the simulator were discontinued at the 

University of Toronto. 

As a replacement for Xerion. this author has wntten a new. custom designed. neural 

sirnulator and it is that simulator which was used to obtain the results reported in 

this thesis. This simulator, which we have named Claymore. was implemented in C 

on a Macintoshm and provides a full graphical user interface for convenience of 

nsualizarion and ease of operation. In addition to the HCL and SCL algorithms which 

were available in Xerïon. the new sirnulator also includes an implementation of both 

the DeSieno and Krishnamurthy versions of FSCL. 
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f@ure 4: Screen capture of the Claymore ANN Simulutor. 

Figure 4 shows the graphical user interface for the Claymore simulator. The upper 

nght window displays Hinton diagrarns of the unit activations. These diagrams 

represent the magnitude of the activations by the size of the shaded area and the sign 

by its colour. Positive activations are shown in blue, while negative values are shown 

in red (not visible in this figure). In the case of this figure. a twelve input. eight 

output network is being simulated. The lower right window displays the 

corresponding weight vectors. again using Hinton diagrams. This graphical 

representation allows the user to easily observe the status of the network while 

training by visually monitoring changes to the weighu. The user also has the option 

in both of these windows of selecting any element of the diagrams in order to view 

the actual floating point activation or weight value of that element. As can be seen in 

the figure. the particular weight element selected has a value of 0.740789. 



The windows on the left prowde feedback about the state of training and the 

selection of training set and test pattern. The upper left window ts a status window 

and displays any algorithm specific parameters. such as leaming rate. In addit~on,  it 

shows the number of epochs sirnulated. and the network error resulting from that 

training. 

The centre left window 1s the dataset window. It allows the user to select which 

datasets are to be used for training the network and which are for testing. The black 

selection indicator to the left of the dataset name pennits the user to choose whtch 

of the datasets to use for network testing. The black selection indicator to the nght 

of the dataset name. permits the user to select which dataset to use for trainrng. 

Finally. the bottom left window is the test vector selection window It permirs the 

user to easily cycle through the test dataset (selected in the dataset window above) 

and to observe the resultrng output activations in the network window. Patterns can 

be presented sequentially by using the arrow buttons. or an arbitrary pattern can be 

chosen with the slider control. Some basic attnbutes of the dataset are also shown at 

the top of this window. 

Network construction and simulation controls are available through the 

corresponding menus. These provide options to add and connect layers, modify the 

algorithm specific parameters, randomize network weights. and perform training. 

Weight values can be saved and restored at any tirne through the File menu. As well. 

the loading of dataset files is also available under that menu. 

2.1 Structure and Design Considerations of the Claymore Simulator 
m ~ a m m m m m m m m m m m m m m m m m ~ m m m m m m m ~ m m ~ m m m ~ m m m ~ m m m m m m m m m m m ~  

The overall design considerations for this software were extensibility and ease of use. 

The various program elements were organized to ensure that al1 user interaction with 

the program was provided solely through the graphical user interface. No external 

configuration files are required to set-up o r  simulate a network, thus making the 

operation of the simulator very intuitive. 
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@ure 5: Oganriuiionul structure of the Uoymore ANN simulator. 

Just as important as the user interface was the requirement that the simulator be 

constructed in such a way as to  allow for easy addition of new algorithms. Figure 5 

shows a block diagram representation of the simulator. As can be seen from that 

figure, al1 interactions with the user are performed rhrough the GUI. It rhen passes 

al1 simulation related requests to the simulation control module (SCM) which 

provides al1 general algorithm independent simulation functions. When it becomes 

necessary for an algorithm dependent operation to be performed the SCM calls the 

corresponding interface function in the algorithm module. Each of the algonthm 

modules is constmcred in the same way and provide the same basic operations to the 

SCM. The diagram of figure 6 ilIustrates the interaction between these two modules. 

Any algorithm specific data structures for the network, layers, neurons, o r  synapses 

are allocared and initialized by the algorithm module in response to calls from the 

SCM (whrch performs initialization of the common parameters such as leaming rate). 

Training and testing of the network is performed by calling the interface functions 

Do Epoch and Apply Vector. These then in turn cal1 any other functions intemal to the 

module in order to accomplish the request, such as updating weights and activations. 

Strict adherence to this programming mode1 allows new algorithms to be 

incorporated very quickly. Algorithm models of average complexity can be included 



Simulation Controf Module Algorithm Module (SCL) 

Init Network Data 

lnit iqer Data 
lnit Neuron Data 
lnit Synapse Data 

Do Epodl 

E Compute Sums 
Update Activations 
Update Weig hts 

Compute Surns 
Update Activations 

Figure 6: Interface between Simulation Controi Module and Algorithm Modules. 

in only a few hours. Source code for the four cornpetitive Iearning algonthms 

programmed for this thesrs are provided in Appendix A. 



mpirical Examination of CL 

he four variations of competitive learning introduced in chapter 1 are not new 

algorithms. They have al1 existed in the neural network literature for some 

rime. However there has yet to be a detailed investigation conducted into the relative 

performance of these algorithms. The most complete examination reported to date 

was conducted by Krishnamunhy et al.l3]1 This involved a companson of their 

impiementation of FSCL ro both HCL and SOFM. The work presented in this and 

subsequent chapters will extend this investigation to include SCL and the DeSieno 

variation of FSCL It rs hoped that the results of this analysis wilI provide a clearer 

understanding of the relative operation and perfomance of competitive leaming 

algorithrns. That knowledge will permit the rntelligent application of competltive 

leaming by providing us with a better appreciation for the class of problems which 

these algorithms are capable of solving and under what conditions deficiencies in the 

algorithms may impede their operation. With thac in mind. we will first examrne the 

performance of the algorithms on abstract low-dimensional problems. such as those 

which might be experienced by the robotic system of figure 7. This robot was the first 

constructed during this thesis and employed two analog optical sensors (or eyes) 

corresponding to a two dimensional input environment. In later chapters these 

investigations wilI be expanded to encompass a more complicated hardware based 

application operating in higher dimensional input spaces. 
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figure 7: Mobile robot with two dimension~/ visual input. 

3.1 Parametric Simulations of Competltive Leaming 
. . . . . . . m . . . . . . . . . . .  . . . . ~ m . m w . . . . . . ~ . . . . m . ~ . m . m . . w m ~ m  

The investigation began with the development of a number of idealized test cases 

which permit examination of the algonthms under carefulIy controlled conditions 

and in situations where the solutions rnay be easily visualized and evaluated. These 

cases will be used to determine not only whether the neural algorithm is capable of 

reaching an acceptable solution. but also how quickly it converges to  chat solution 

and what difficulties it encounters aIong the way. 

The test cases themselves consist of Gaussian distributions of data points in a two 

dimensional input space. In t e m s  of the robot, these Gaussians correspond to sirnilar 

visual scenes which provide comparable optical intensities measured by the two 

detectors. Since the test data has been artificially generated it possesses well known 

properties, allowing for precise evaluation of the network's performance. The 

followng description wll detail the results of simulations conducted o n  the datasets 

using the HCL and SCL algorithms. 

The investigation first considered the case of simple geometrical data distributions 

which are well separated in the input space (corresponding to clusters of similar 

visual scenes. welt separated from other distinct scenes). Of interest 1s the way the 



receptive fields (prototypes) onent thernselves in relation to the data they are 

attempting to represent. First we consider the very simple case of two physically 

disjoint Gaussian clusters placed at opposite sides of the input space. A network with 

two output units was then simulated using these input patterns and it was found that 

both the SCL and HCL networks were able to learn this problem from a limited 

number of data points such that one unit was centred in each of the two input 

clusters. Figure 8 shows the input distnbution and the iearned location of the 

prototype centres (w) .  The SCL network used symmetrical Gaussian activation 

functions and for the purpose of these simulations the variance of these Gaussians 

was fixed at a2=0.0044 to match the spread of the data clusters. though this 

parameter could also be Iearned. The networks were trained using a dataset of 1000 

patterns drawn from the two gaussian distributions w t h  each gaussian producing 

half of the patterns. These input vectors were stored in the training file in random 

order to avoid any potential systemic effects which may arise from a sequential 

ordenng. The network weights were initially set to random values also drawn from a 

Gaussian distribution centred at 0.5 with a standard deviation of 0.1. The results 

from this experiment showed that HCL performed slightly better on this problem 

than SCL. reaching a stabIe solution in only .) passes through the training data 

Figure 8: Two well seporuteà Coussian input dusters and the learned weight vectors. 



(epochs). SCL reached an initial solution in 5 epochs and then refined that solution 

for an additional i epochs. A learning rate of &=0.001 was used by both networks. 

For this expenment the weights began in the centre of the input space and moved 

quickly to the centres of the data clusters. However. in some situations the weights 

rnay be initially positioned in a region well away from the data values. If this occurs, 

a different leaming behaviour is observed. With the HCL algonthm whichever of the 

two prototypes 1s closest to the input data will win the cornpetitions and move 

towards thern. taking up a position in the centre of al1 the data points. The other unit, 

being much farther away from the data. w l l  lose every competition and the learning 

wl l  end up stuck in a non-optimai solution. The second unit is orphaned and its 

presence is essentially irrelevant. With the SCL network. one initially notices a 

similar type of behaviour, but because al1 units update their weights in proportion to 

their activations the second unit still makes very small movements towards the data. 

Following several epochs it will eventually be drawn into the rniddle of the 

distribution. Once this occurs the units then diverge to cover the two separate data 

clusters as before. This result clearly shows an advantage to using the SCL method. 

though the number of epochs required to reach the final solution will be very large. 

For the simulations conducted. it was not uncommon for SCL to require 18000 

epochs to converge. This long training time is a direct consequence of the very small 

weight adjustments dictated by equation 9. The small adjustments are to be expected 

srnce the pet-ipheral unit's activation is almost zero and hence Aw wilI also be near 

zero. One possible method to expedite this process would be to enforce a mtnimum 

weight update and thus allow distant units to make small but more substanttal 

adjustments during each epoch. Such a scheme has yet to be evaluated in practice. 

Data distnbutions with well separated Gaussians are very easy to solve since it 1s 

obvious. both to the network and a human observer. that there are two distinct 

clwters in the data. This is not the case for somewhat more complicated distnbutions 

of overlapping Gaussians. Obviously, the higher the degree of overlap between two 

ctusters the more difficult it will be to distinguish them from each other. To analyse 

this situation additional simulaticns were conducted on several data distributions 

containing four Gaussians with varymg degrees of overlap between two of the four 



clusters. Figures 9-1 1 show these distributions. It was found that both SCL and ff CL 

were able to identify the four clusters but that the convergence times increased wrth 

the degree of overlap. Training times on these three darasets and the previous two 

gaussran dataset are surnmarized in table 1 below. 

Table I : Relative trmning fimes of HCL and SCL expressed in epochs. 

Figures 12 and 13 show the relative convergence times of these algorithms on the 

initial two Gaussian ptoblem and the four Gaussian problems. As can be seen. SCL 

was found to converge significantly faster than HCL in the presence of overlap. This 

Figure 9: Dataset with four isolated Gaussion dusters and 
leomed duster centres. 
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Figure 1 O: Dotaset with four Gaussian dusters displa fing slight 
overlop and showing leamed duster centres. 

Figure 1 1: Dataset i t f ,  fourgaussian dusten displaying significant 
overiop and showing learned duster centres. 



Figure 12: Mean squared error vs time for the HCL algon'thm. 

Figure 13: Enor vs time for the SC1 algorithm. 



Figure 14: Oror versus time cornpanson for HCL and SCL on 
the port!aIiy overiapping Caussian problem. 

behaviour is more clearly demonstrated in figure 14. which shows the relative 

training times of HCL and SCL on the 'Gauss 3" problem corresponding to figure 10. 

Here the error values produced by the SCL network are converted into an equivalent 

mean-squared-enor based on the known propenies of the data distribution. It 

should be noted that while SCL provides better performance than HCL. it does so  at 

the expense of additional computation. For the two input. four output network 

examined here. SCL required approximately five times more computation than HCL. 

In most training tnals SCL was able to correctly identify the presence of four clusters 

in spite of the overlap. Yet, in a couple of attempts the network becomes trapped in 

a non-optimal solution with the two overlapping clusters being covered by only a 

single unir and the other two clusters being shared by the remaining three units. 

Though this is not the best possible solution. it can not be considered a complete 

failure either. since the network was still able to extract some useful information from 

the data. In contras,  the sensitivity of HCL to irs initial weight values makes it quite 

susceptible to the orphaning of units. which produces soIutions that do  not represent 

the data in an acceptable way. For example. the fourth curve in figure 12 shows the 



figure 15: Weight traiectories for an HCL network. 

i 2 

high mean-squared-error resulting from poor initialization of the HCL network's 

weights. In this case the weights were initialized around 1.0, rnstead of 0.5 as was 

done in previous expenments. The result is a mean-squared-error of 119 which 

clearly indicates the poor quality of the resulting solution. The plots of figures 15 and 

16 demonstrate typical weight trajectories through the data space for a successfully 

trained HCL and SCL network. 

Unal +- 
Unit 2 .+-- 
~ n i t  3 * ' 
Unit4 +- 

3.1.1 Examination of Complex Two-Dimensional Data Distributions 

While the previous four examples illustrate the general behaviour and relative 

performance of the algonthms, one wouId not consider these discnmination tasks to 

be partrcularly challenging. To better bauge the operation of the algorithms on more 

difficult tasks a more complicated dataset was constructed. This dataser consisted of 

five Gaussian clusters with varymg degrees of overlap and density, and is shown in 

figure 17. Each of the four clusters to the nght of the figure contain 500 elements. 

while the larger cluster on the ieft contains 2000. This dataset was presented to a two 

input, ten output network with initial weight values randomized around 0.5. As 
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figure 16: Weight Irajedories for an SCL network. 

Figure 17: Complex datatset and the resulting HCL and 
SCL solutions for a 1 O unit netwonk. 



before. a Ieaming rate of ~=0.00 1 was used. The resulting solutions produced by 

bot h HCL and SCL are also shown in the same figure. 

In examining the solutions one observes that the HCL algonthrn distnbutes its units 

in such a way as  to cover the data in a roughly uniform fashion. Note that the large 

cluster on the left contains no more units than the smaller cluster irnmediately 

adjacent to it. demonstrating that HCL places no significance on the density of data 

points (as one would expect). However, the solution produced by SCL rs quite 

different. This algonthrn places two units at the centre of each of the five clusters. 

This difference in solutions is a direct result of the diffenng objective functions being 

used by the two networks. HCL is atternpting to locate the best solution by 

minirnizing the mean-squared-error between its weight vectors and the data vectors. 

which it can accomplish by spreading the units throughout the data, as shown. SCL. 

in contrast. is attempting to rnaximize the probability that its radial-basrs-function 

untts are responsible for producing the data values. Placing its units in the rnanner 

used by HCL would not accomplish this. Instead the optimal solution under this 

cnterion is to locate the unit centres exactly in the centre of the individual data 

clusters. This is true even if the result is the coincident placement of units. as was 

found in this example. Again, it should be noted that this algorithm also places no 

significance on the density of the data clusters. 

In addition to the HCL and SCL algonthrns, this dataset was also tested using the 

Knshnamunhy and DeSieno versions of FSCL. The resulting solutions achieved by 

these two algorithms are presented in figure 18. It can clearly be seen that both 

techniques are distributing their units according to the density of the data. The 

placement of units for the four low density clusters is relatrvely equivalent. Where 

the solutions differ rnarkedly is in the placement ol units within the high-density 

cluster. While both algorithms use four units to represent this cluster. F S C b  places 

its units at the centre of the data. while FSC4, distributes them evenly around the 

cluster. This difference is a direct consequence of the way in which the two networks 

use the frequency component in determining a solution. For F S C b  the frequency 

based bias tenn (equation 5 )  strongly influences the selection of a winning unit when 



Figure 18: Complex dataset and the resulting FSCLK and 
FSCLD solutions for a 10 units network. 

the units are winning a disproportionate number of cimes. However, once weights 

have been adjusted in such a way as to result in uniforrn winning proponions for al1 

unrts, the bias term no longer dominates the learning and the simple Euclidean 

distance is used. Under this condition the units can minimize this distance only by 

moving to the middle of the data cluster. 

In contrast, FSCL, maintains the frequency dependent aspect of the training 

throughout the entire leamrng process. As a result. the four units in the dense ciuster 

spread out uniformly in order to assume responsibility for an equaI proportion of 

these data points. This is clearly the superior solution since it  makes the best use of 

al1 units. To confirm this conclusion. the relative mean-squared-error of HCL. 

FSCL,, and FSCL, was recorded during the training process, and the resulting plot 

is shown in figure 19. The two FSCL,, curves represent the solutions achieved by this 

algorithm using a bias factor of C =  1.0 and C= 10.0 respectively. As is quite evident 

frorn those two results. the performance o i  FSCL, 1s strongly dependent on the 

choice of bias factor. 
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Figure 1 9: Relaîive M X  performance of HCL, FSCLo and 
fSCLK on the complex dustering task. 

Since FSCL, produced such an effective solution when confronted with this complex 

data distribution, we decided to test i t s  ability to solve a second, more challenging 

problem. This new dataset. shown in figure 20, contains three Gaussians of varyng 

size and density. along with an overlapping rectangular region of uniforrnly 

distributed random points. The large Gaussian contains 3000 points, while the 

medium and srna11 Gaussians contain 1500 and 500 points respectively. The 

rectangular regions in the lower right 1s made up of 2000 points, for a total of 7000 

data points in the training set. Weighu were again randomized around 0.5 at the start 

of training and a learning rate of E =0.001 was used. A total of twenty units were 

provided to the network and the final placement of the weight vectors is shown in 

the figure. 

As can be seen. FSCL, once again produced a well structured solution by uniformly 

positioning units based on the density of points. In spite of the complicated structure 

the algorithm converges 10 a solution in less than 5 epochs. This convergence tirne 

was largety unaffected by changing the random initial values of the weights. This is 



figure 20: FSCLx solution to a complex data &tribution containing 
60th Caussian and unifom mndom data distributions. 

demonstrated by error rneasurements of figure 21. resulting from initialization of the 

network weights around 0.2, 0.4, and 0.6. 

It should be noted that the solution produced by this network is not capable of  

individually identifying the four onginal distributions from which the data was 

constructed. since it has no additional information at its disposa1 on which to base 

such a discnrnination. However. that discrimination would be possible by ernploytng 

additional supervised Iearning, or by providing the algo rithm with supplementary 

parameters allowng the separation of these base distributions in a higher dimension. 

3.12 Effect of Leaming Rate on the Performance of Krirhnamurthy FSCL 

To this point a unrforrn learning rate of E =0.001 has been used for al1 algorithrns and 

simulations in order to permit fair comparison of the networks. The CL algonthms 

other than FSCL, will not generally tolerate large leaming rates. However, we wished 

to test the FSCL, technique in order to determine how susceptible its performance 

was to the use of these higher learning rates. To this end. the same network was again 



Figure 2 1 : Error performance versus epod, for a FSCLK 
network troined on a cornplex dota &ribution. 

sirnulated on the second complex data disrribution with weights randornized at 0.5. 

but the leamtng rate was changed from ~ = 0 . 0 0 1  to 0.01. 0.1 and 1.0. The resulting 

mean-squared-error performance versus tirne ts presented in figure 22. As this figure 

dernonstrates, the FSCL, algorithm is capable of easily locating a stabIe solution for 

Ieaning rates up to &=O. 1. However, in the case of E= 1 .O the resulting weight 

adjustments become so large that the network is unable to converge to a single stable 

solution. It instead oscillates between many sub-optimal solutions. In splte of this. it 

is evident that the aIready expedient leaming observed with this algomhm can be 

safely irnproved by using rnoderately targer leaming rates than those employed in 

earlier expenments. 

3.2 Effects of Exponential Approximations on Leaming Performance 
. . . . . . . . . . . . . . m . . . .  . * . m . o . m . w . m * ~ . m . . . . 1 . . . . . . m . . . . .  

The simulations performed earlier in this chapter show that SCL has a very definite 

advantages over HCL. both in speed of convergence and quality of solution. 

However, the anthmetic computations for SCL are more complicated. requiring the 

evaluation of an exponential function in detennining a unit's activation. This 



figure 22: MSE versus tirne for a FSCL, network leoming a 
cornplex dotmet using various leaming rates. 

function is not available in the restricted mathematical repertoire found in most 

embedded microcontroller applications. As an alternative tn these situations it is 

possible to replace the exponential with a look-up table approximation. However. it 

is not ciear to what degree the use of a look-up table will impact the ability of the 

algorithm to reach a suitable solution. In order to answer this question. a number of 

simulations were conducted using the same set of test cases described above, but 

replacing the exponential function with look-up tables of vanous sizes. To help 

improve the accuracy of the approximation, the function e' s (1 + x) was used for 

arguments in the range [O.- 1) and a simple 100 k-up table used for values in the range 

[-1.40). Al1 arguments below -40 were considered to be equal to -40. The results 

of these simulations are summarized in table 2 .  



TcibIe 2: Nurnber of conect solutions leumed for d i e n t  sked look-up tables. 

Each of the test cases was simulated a total of five times with each size of look-up 

table. For reference purposes the network's performance using a true exponential 1s 

ais0 inctuded in the table. The table values show the number of -correctw soluttons 

discovered by the network in those five leaming tnals. A solution 1s considered 

correct if the network was able to place a prototype at the centre of each of the input 

clusters. €rom the table it is clear that larger table sizes provide better performance. 

However. it should be noted that the network will occasionalIy get stuck in a sub- 

optimal solution. independent of whether a true exponential or a look-up table is 

used. 

One other significant side effect of using a look-up table approximation is the 

network's inability to converge to a stable solution. In those situations the coarse 

nature of the look-up table results in the network oscillating around the precise 

solution. This occurred consistently for the 15 and 8 element look-up tables, but was 

almost nonexistent for the smaller tables. As well, the effect was only evident on the 

more difficuh problems consisting of overlapping Gaussians. The reason for this 

behaviour is quite clear. The Ieaming algorithm is attempting to make small 

refinements in the weights in order to move them closer to the centre of the clusters 

and thereby reduce the network error. However. since there are only a limited 

number of adjustment vatues avaiIable from the table, the network is unable CO make 

preciseiy the update it requires and overshoots the desired value. On the next epoch 

it must then correct for this new error which again results in an overshoot. 50 the 

weights end up  oscillating back and forth around the true minimum. This effect 

occurs mainly in the more difficult training situations because these are the cases 



which require the finest weight adjustrnents to ensure proper discrimination of the 

clusten. Even though these oscillations do  occur, they are relatively smatl and do not 

have a significant effect on the quality of the solution. In tests with the very srna11 

look-up tables there are so few values available that the network defaults to making 

the smalfest possible update and eventually reaches a stable solution. 

3.3 Detennining the Required Number of Network Units 

Ils was discussed in chapter 1, unsupervised methods are ideally suited to situations 

where the number of data clusters is not known prior to training. The question then 

anses: How does one know how many output units, and hence receptive fields. to 

provide in the network for a given problem? There u no easy answer to this question. 

Up to this point most simulations have been usrng exactly the same number of units 

as clusters in the data. An exception 1s figure 20. where an excess of units were 

properly employed to represent the data following learning. But provtding the 

optimal number of units is only possible if we know in advance how many clusters 

exist and in many situations this information is simply not available. What is clear is 

that providing the network with too few units wll  make it impossible to find the best 

solution. However, tt is not obvious what effect providing a surpIus of units will have 

in the general case. 

In order to answer this question a few simple SCLsimulations were conducted. These 

involved the clustenng of the four isolated Gaussians (figure 9) using either one too 

rnany or one too few units. As expected. when the network 1s operating with one Iess 

unit than is ideally required, the network will reach a solution in which one unit 

cakes a position between two clusters and attempts to represent both of thern. The 

other units position themselves as belore, in the centre of each of the remaining two 

clusters. Figure 23 shows one such possible solution. For situations where an 

additional unit is provided the network represents three of the clusters using three 

of the units. and the two rernaining units share responsibility for the fourth. 

This behaviour appears to show that the network is capable of dealing in a reasonable 

way with any extra or  even deficient resources at its disposal. It suggests chat if the 



Figure 23: Ciustering of four gaussians using three units. 

desired number of clusters is not known in advance it is best to provtde the network 

w t h  a larger nurnber of units and perhaps rernove redundant units near the end of 

training through pruning. This would ensure that the network has the necessary 

resources to discover the crue structure in the data, yet only retairted the necessary 

units once training was concluded. Of course, it shou1d be noted that adding extra 

units will not only retard the leamtng process, but may also result in the network 

overfitting the data. As a consequence, the network will achieve better perfomance 

on the training data, but poorer generalization. In any case, there appears to be some 

flexibility in the number of units one provides. 



Hardware Systems Employing ANNs 

aving examined the basic performance of competitive learning in the context 

of low dimensional input spaces. we would now like to extend these 

investigations to more practical problems in higher dimensions. Many of the tasks 

described in the introduction of chapter 1 would be suitable candidates, but of 

particular interest to this author is the potential benefits of using neural technology 

as a component in the control of mobile robotic systems. This application is made 

even more interesting if the robotic systems are constructed from inexpensive, off- 

the-shelf cornponents. Under these conditions the neural algorithms are subject to 

additional computational and energy consumption constraints which do not corne 

into play when one uses the aIgorithrns on high-end workstations or  in advanced 

desktop computing environments. 

Is it possible to construct systems which are capable of perforrning meaningful 

adaptive signal processing tasks using inexpensive, off-the-shelf cornponents? Are 

the competitive leaming algorithrns capable of operating under such conditions? 

What are the consequences of limiced precision computations and limited memory 

resources? It is these questions which we will attempt to answer in the remainder of 

this thesis. 

4.1 Custom Neural Circuitry 
m m m m m m m m m o m m m m m m m m a m m m m m m m m m m ~ m m m m m m m ~ m m m w ~ m m m m m m m m m  

A significant portion of the research conducted in our laboratory in recent years has 

focused on the implementation of neural network algorithms in compact low-power 



custom VLSI h a r d ~ a r e . ~ ~ ~ - ~ ~ ~  The bulk of thts work has concentrated on custom 

analog neural circuits. though pulse Stream digital networks have also been 

investigated in our l a b o r a t ~ r y . ~ ~ * - ~ ~ ~  The main advantage to al1 these approaches is the 

high synaptic density which can be achieved in cornpanson to traditional digital 

circutt implementations. As well, since each of the synapses is essentially a special 

purpose processor. operating concurrently with al1 other synapses. there 1s a great 

efficiency of cornputation. This allows for large effective computatron rates using 

fairly rnodest structures. Our analog neural crrcuitry has relied heawly on a CMOS 

version of the wide-range Gilbert multiplier.1r61 This anaiog multiplier 1s very 

compact in comparison to an equivalent multiplier constructed using digital 

components. requiring as few as 19 transistors. 

As a result of the long term work. a significant arnount of experience has been 

acquired with respect to the propertles of the Gilbert multiplier and how rt perforrns 

both theoretically and in an actua1 circuit environment. Past studies have inciuded a 

detailed investigation into the vanous types of circuit and fabrication difficulties that 

would be encountered as a result of irnplementing an analog system using these 

multipliers. tt was found through those investigations that the analog neural circuits 

are quite robust and are capable of leaming non-tnvial tasks while endunng 

significant fabrication and environmental limitations. Readers interested in a more 

detailed description of these past results are referred to [15,231. 

While the analog circuits have definite advantages in terms of integration density. the 

technology is not presently available as commercial corn ponents. Analog ANNs are 

still very much a topic of ongoing research. Presently, the only way to exploit this 

technology is through the design of custom integrated circuits. which cenainly 

violates our requirernent for inexpensive systerns. In addition to the availability and 

cost issues. analog neural circuits suffer from a problem cornmon to al1 analog 

ctrcuitry. and that is the interfacing of the analog neurons to each other and to other 

hardware components. Fonunately, due to continued advances in CMOS fabrication 

technology. the corn pIexity and computational performance of t raditional digital 

circuitry has increased drarnatically over the past decade. As well. operating voltages 

of these devrces have decreased. resulting in reduced energy consumption. 



Furtherrnore, the costs of these components has dropped substantially, making it 

possible to purchase a relatively inexpensive RiSC or  CISC processor which provides 

computational power comparable to older custom analog systems. White it is 

possible to  exploit these advances in the analog circuits as well. the speed-up already 

achieved in the digital systems make them very attractive engines for l e s  aggressive 

neural applications. Though not as area efficient as a full custom analog 

implernentation. paralle1 arrangements of digital processors can also provrde an 

effective platform for higher performance neural applications. Such systems may 

even cake advantage of reconfigurable hardware such as field programmable gate 

arrays (FPGAs) to augment the functions of the serial p r o c e ~ s o r s . ~ ~ ~ ~  

The target hardware system selected for this study is that of a simple autonomous 

mobile robot controlled by an inexpensive digital microprocessor. This system 

performs limited precision integer computations and has very limtted mernory 

resources. In order to detemine a suitable sensory arrangement for the robot it was 

felt that one should look to exrsting biological systems for motivation as to the type. 

quantity. and arrangement of sensory inputs. This technique has been used 

commonly in the past for similar robot applications using non-adaptive control, such 

as the cricket After some consideration. the vision system of the jumping 

spider was selected as the basis for the constructron of our  robotic sensory system. 

4 2  Arachnid Biology 
m m m m a ~ ~ m m m m m m m m m m m m m m w m m m m m m m m m m a m m m a m m m m m ~ m m m m m m m m m  

Spiders are very familiar creatures to a11 of us given their presence in al1 parts of the 

world. However. due no doubt in large part to Our familiarity and occasionally even 

fear of  these creatures, the complex structure and behaviour of these fascinating 

animals is generally overlooked. One does not typtcally stop to admire the intncate 

construction of a spider's web. nor do  most people realize that not al1 spiders build 

webs. Some species actually hum their prey instead of trapping it. The well known 

tarantula 1s one such example. The abdity of a 'simple" invenebrate to perform such 

intricate behaviours gives us some insight into the t m e  complexrty of these creatures. 

When one does stop ro investigate further. one fin& chat spiders are. in essence, 

signal processing machines. Their relarively simple collection of neural cells, the 



ganglia. are responsible for the processing and coordination of a whole host of 

senses. These senses include tactile receptors in the form of innervated hairs which 

cover the majority of the spider's body. Most of the hatrs provide feedback relating 

to physical contact w t h  objects, whlle a few others are so sensitive that they are 

capable of detecting the motion of minute air currents. This interesting ability 

permiu the spider to sense the motion of prey in its immediate vicinity without 

rnaking physical contact with it. 

tn addition to tactile stimuli, 

there are also chemical receptors 

located on the first of the 

spider's four pairs of legs. These 

receptors provide the animal 

with a sense of smell. and 

perhaps taste as well. 

Being an invenebrate. the load- 

bearing structure of the spider is 

provided by a rigid exoskeleton. 

In order to ensure that physical 

stresses do not result in damage 

to the exoskeleron, the spider 

has evolved a series of stress 

sensors which are distributed 

across the surface of its body. A 

large proportion of these sensors 

are concentrated near the joints 

of the eight legs, since these are 

regions of high mechanical 

figure 24: jumping spider indigenous to Manitoba. 

stress. Not only must the legs carry the weight of the spider's body while it moves 

across a horizontal surface, but they must also support the animal in a variety of 

orientations. such as when suspended from the underside of a leaf or hanging from 

a web. Such conditions may result in considerable stress being applied to the legs. so 



it is of cntical importance to have a mechanism to measure this stress in order to 

prevent the overloading of these vital members. Also present within the leg joints are 

a number of propnoreceptors which prowde feedback concerning the position of 

each of the leg joints. 

While al1 but a few species of spiders possess eyes. most species have rather poor 

vision. Web spiders. for example. receive most of the sensory information they 

require through the vibration of their webs. Their eyes are necessary only to  detect 

motion, which plays a pan in courtship and in reacting to possible danger from 

predators. Web builders rely mainly on their tactile abitities in detemining the 

location of prey which become entangled in their web traps. As was previowly 

mentioned. there are several species of spiders which do not build webs for trapping 

prey but instead actively hunt. A s  one can well imagine, good vtsion would be a 

significant asset to those spectes. As a result, the vision in these spiders is 

considerably better than their web building cousins. 

The group of spiders possessing 

the most acute eyesight are the 

jumping spiders (salticidae). 

While there are many species of 

jumping spider they al1 share one 

cornmon prominent attribute; a 

large pair of foward facing eyes. 

Known as the antenor media1 

(AM) eyes. these eyes p rovide the 

spider with superb vision over 

short distances. which is very 

important for the identification 

figure 25: üuntal eye arrangement of a local 
jumping spider showing the large AM and srnal/er AL 

and tracking of prey. The photomicrograph of figure 25, from our laboratory, shows 

the frontal view of a typical jumping spider (figure 24) indigenous to Manitoba. One 

can clearly see the large AM eyes. 



Figure 26: Visuai field of the jumping ~ p i d e r j ~ ~ ]  

In addition to the main eyes. the jumping spiders also poses two additional pairs of 

eyes which are used pnmarily to derect motion. One of these pairs. the antenor 

lateral (AL), is located next to the AM eyes on the forward looking surface of the 

spider's body. These c m  also be seen clearly in figure 25. The remaining pair. the 

postenor laterd (PL) eyes. are located on the sides of the body just behind the AL 

eyes . 

Each of the three pairs of eyes provide quite different fields-of-view. Figure 26 shows 

the arrangement and relative fields-of-view of the spider's six eyes when seen from 

above. While the four latenl eyes collectively provide a large field-of-view 

approaching 360°. they do so at the expense of visual acuity. Each PL eye provides 

vision over an angle of approximately 130°. whiIe the ALs cover an angle of 

approximately 60" each. There is signtficant overlap of the ALs at the front of the 



animal. In contras to the P b  and A b ,  the AM eyes provide detailed vision in only 

a narrow field of approximately 10". In order to make the best use of these higher 

definition detectors, nature has promded the spider w t h  the ability to point the ALs 

over a range of approximately 70" through the use of muscles attached to the retina 

at the rear of the eye. Motion detected by the PLs or ALs causes the spider to t u m  its 

body to face the object of interest where it can then be examined in detail by the more 

capable AM eyes. 

It is the jumping spider's vision system which has been selected as the basis of the 

sensory system developed for the autonomous mobile robot which we have 

constructed during this thesis. 

The robotic system used in this investigation is s h o w  in figure 27. As can be readily 

seen frorn this figure. plastic LEGO' Technic building bricks are used for the 

mechanical and structural components of this robot. They allow for considerable 

flexibility in design and construction. while at the same time ensuring that the final 

Figure 27: Profile view of second generabon LEGO@ rubot 



system is robust. Control of the robot is provided by a ~ o t o r o l a ~  MC68HCll based 

microcontroller board designed at the Massachusetts Institute of Technology's Media 

L a b ~ r a t o r y . ~ ~ ~ . ~ " ~  This board. named the HandyBoard. is capable of receiving input 

from seven analog and six digital sources. and is able to provide direct control of four 

DC motors. Conversion of analog inputs to digital values is perfonned by an ND 

converter resident within the HCll  processor. The processor's $-bit address bus 

allows for a total addressable system mernory space of 64k bytes. However. thrs 

address range is shared between support for memory mapped peripheral hardware 

and 32k of combined program and data RAM. These modest resources significantly 

constrain the complexity of the neural algorithms which may be implemented on the 

processor. 

While the processor itself is capable of only 8-bit integer computations, a simple 

multi-tasking operating system and C cornpiler/interpreter are available for this 

board. pennitting Iimited operations on l6-bit integers as weil as some support for 

floating point numbers. The compiler/interpreter. known as Interactive 6, was also 

originally developed at M.I.T. and is now sold commercially. It allows for convenient 

prograrnming of the HandyBoard using a subset of standard C programming 

constructs and conventions. 

The robot pictured in figure 27 is actually the second generation of robot designed 

for use in this work. The onginal system. shown in Figure 7 of chapter 3. used an 

earlier imptementation of the HandyBoard and provided movement of the robot 

through the use of a differential tractor dnve mechanism, powered by two high- 

speed DC motors. These motors were connected to the tracks through a gear 

reduction system which reduced the output speed while increasing the torque 

provided to the tracks. Unfonunately the gear mechanism. which was also 

constructed from plastic LEGO gears, suffered from a serious friction problem that 

ultimately made this design unworkable. 

In an effort to improve on the tractordrive it was felt that the simple DC drive motors 

should be replaced by stepper motors. The operation of a stepper motor 1s more 

complicated than a DC motor but provides significantly higher torque at low speeds. 



thus obviating the need for a gear system. As a result, wheels can be affixed directly 

to the  motor shaft, allowing for a more compact and efficient overall design. In the 

robot of figure 27 two stepper motors are used. one for each of the two wheels. The 

use of wheels allows for a straightforward and reliable means of locomotion through 

the robot's enwronment. Movement and steenng of the robot is achieved through the 

differential operation of these wheels. 

While the DC rnotors are dnven by applying a 

DC stimulus to a single motor winding. the 

stepper rnotors. in contrast, contain four 

wndings  which must be excited in a cyclical 

pattern in order for the motor shaft to rnaintain a 

uniform speed of rotation in a particular 

direction. For the stepper motors used here, 

excitation of a single winding results in a 7.5" 

rotation of the shaft. Thus for one complete 360" 

revolution each winding must be excited in 

Kgure 28: Stepper motor windrig 
arrangement- 

sequence 12 times. If the HandyBoard were required to supply this excitation it 

would place a significant load on the processor. further restricting the already rneagre 

cornputational resources available to the neural controt algonthm. In order to avoid 

this impedirnent. a custom slave controller was designed which provides the 

necessary excttation to the two stepper motors in response to direction and speed 

information supplied by the main HCL 1 processor. This altows the HC11 to issue a 

single cornmand to the motor controller and then to continue with its regular 

processing while the slave processor coordinates the low-level operation of the 

motors. No further intervention 1s required by the main processor until either the 

direction o r  speed of the rnotors requires adjustment. 

The slave controller, pictured in figure 29, receives commands written to an 8-bit 

register by the main HC11 processor. The controller's PICl6C55 processor then 

interprets these commands. consisting of a direction bit and 3-bit speed value for 

each motor. Based on this value an appropriate motor excitation is generated and 

supplied to the windings through a driver K. The DIP switches visible at the nght of 
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figure 29: Stepper motor control circuit 

figure 29 permit adjust of the mapping between actual robot speed and the 

corresponding command byte value. 

4.3.1 Robot Sensory System 

As was discussed in section 4.2, the biological motivation for the robotic sensory 

system is the vision system of a jumping spider. As is the case with the spider, the 

robot's visual experience consists of the combined input from six analog optical 

detectors rnounted on the robot's front surface. Each of these sensors were setected 

such that their fields-of-view were roughly comparable to that expenenced by the 

spider iuelf. ' 
The first sensor pair corresponds to the narrow field-of-view of the spider's anterior 

medial eyes. An Optek OP805 phototransistor was selected here. In order to measure 

the tme angular response of these detectors, a test jig was constwcted which permits 

the detector to be excited by a common oprical source and its response recorded. 

This apparatus. shown in figure 30. allows a source to be pIaced a fixed radial 

distance from the detector and moved over an angular distance of 190" relative to the 

centre line of the detector. A total of 29 rneasurements were recorded at fixed 

intervals over this 180" arc. This process was performed at 7 different radial 

distances. beginning with a lcm gap between source and detector. and concluding 

1. I t IS stresscd that the complexicy of the spidcrf eyes grcatly cxcnds rhat of the optical detcctors cmployed in t h  
robot. However. the  esencc of the currcnt study IS the coardinaced inrerprctarion of the detlctor values. 



figure 30: Sensor characîeniat!on apparatus. 

with a 10.6cm gap. Since the detectors will be connected to the analog input ports 

of the robot's HandyBoard contmller. this board was also used here to perform these 

measurements. The resulting response of the sensor is shown graphically tn 

figure 3 1. As can be seen frorn this figure. the phototransistor provides a strong 

response over a range of approxirnately 11 5". 

0 0 0 0 0 0  q q y ?  c y Y 1 a )  

Angle (degres frorn centre) 

figure 3 1: OP805 f%ototronslitor response K. angle to source. 



Angle (deg rees from centre) 

Figure 32: L I QCl Photo transistor response a. angle ta source. 

The second pair of optical detectors used were L14C1 phototransistors which 

correspond to the anterior lateral eyes of the spider. As was done wlth the OP805 

detectors, the response of the L14Cl sensor was tested using the same procedure 

described above. The response of this sensor is shown in the plot of figure 32. Here 

the detector shows sensitivity over a range of approximately &O0. 

Finally, a pair of cadmium sulphide photoresistors were used to represent the 

posterior lateraI eyes. Again, the response of these detectors was tested 

experimentally, resulting in the plot of figure 33. These detectors prowde a strong 

response to optical stimulus over a broad anguIar range of approxrmateiy 180". 

Though not obvtous from these rneasurements, it should be noted chat the 

photoresistors respond much more slowly to sudden changes rn light intensity than 

do the pairs of phototransistors. This behaviour wiIl impede the ability of this 
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figure 33: Photoresistor response vs. angle to source. 

panicular pair ot sensors to track rapidly changing sources. should such a situation 

anse. 

The six sensor were arranged on the front of the robot as shown in figure 34 .  

Rgure 34: Robot sensor arrangement. 



4.32 Optical Stimulus bard  

Since we empIoyed this robot as a test mechanrsm for the neural algonthms it was 

necessary to have some means of providing a well controlled. repeatable optical 

stimulus to the robot. In order to achieve this, a light panel was constnicted which 

consists of a 5-by-5 grid of light ernitting diodes against a contrasting matte black 

background. The light board is controlled by a custom destgned rnicrocontroller 

board also constmcted by the author using a PIC16C74 microprocessor. This allows 

for any or  al1 of the LEDs to be illuminated at any one tirne. A series of up to 22 of 

these light patterns can be downloaded to the board from a Macintosh througn a 

standard RS-232 serial interface. Following download, the PIC controller repeatedly 

cycles through the patterns at regular intervals. The inter-pattern timing may be 

adjusted under software control. Red LEDs were used in the design of the light board 

because their wavelength (635nm) rnost closely matched the peak reception 

wavelength of the OP805 and L14CL phototransistors (870nm). 

Figure 35: Light board. 



Simulations of CL for Robot Vision 

T he algorithmic simulations reponed in chapter 3 considered only a two 

dimensional input environment. Those investrgations were then extended into 

higher dimensional environments based on the visual system of the robot. In place 

of t he simple Gaussian clustering problem used prewously, we wanred to select a task 

which would be appropriate for the robot to perfonn given the complexity of its 

opttcal sensory apparatus. It was decided chat detection of both stationary position 

and directional motion of a single light source would be a useful and chalienging 

behaviour. For the robot to detect the stationary position of a source, al1 that is 

required is intelligent processing of the robot's six analog inputs ar any instant of 

time. However. for there to be any possibility of detecting motion, the system will 

require not only the present readings from iu sensors but some time delayed values 

as well. Based on this requirement the input to the neural network also involved 

sensor readings with a single tirne delay . i.e. readings taken at times c and t-l . which 

result in a twelve dimensional input for this panicular robot. 

Before attempting to simulate learning with the full complex geometry of the robotic 

vision systern. we firsr investigated the ability of the neural algonthrns to cluster both 

stationary and rnoving patterns using a somewhat sirnpler sensor geometry. This 

geometry was then made progressively more comphcated until it mimicked the 

robot's tme sensory apparatus. Once we were confident chat the problem was 

leamable within the constraints of the controtled simulation environment, the same 

task was tested on the actual robot operating in the real worid. 



We shall begin by first exarnining the situation of a sensory system whose geometry 

closely matches that of the excitation. This wouId correspond. for example. to an 

animal which has evolved sensory apparatus that is highly adapted to a specific 

sensory task. For this investigation the sensor arrangement deptcted in figure 36 will 

be ernployed. Here the vinual sensors are placed in a cross arrangement wtth an 

intersensor spacing of two gnd units. Al1 five of these sensors have identical fields- 

of-vtew of î25" from centre and al1 are oriented with their centres perpendicular to 

the sensor plane (facing the light sources) 

For the purposes of training, an artificial 

dataset was generated which modelled the 
Light sources 

e 
output of the five senson in response to 

excitation from an array of lights placed a Sensors 

distance of five gnd units from the sensor 
e 

e 
plane. As the figure illustrates. the 

geometry of the light array in this case 

matches that of the sensors themselves. e 
Each individual training pattern in the 

Figure 36: Simple sensor and 
dataset corresponds to a single element of excitation geometry. 

the light array being illuminated. To 

provide a more realistic mode1 of the sensor response. a small amount of Gaussian 

random noise 1s added to the modelled sensory outpuu. A tratning file consisting of 

1000 patterns was produced using a standard deviation of 0.001 for this noise. Each 

of the five lights was illuminated an equal proportion of the time resulting in LOO 

patterns for each light. The 1000 patterns were then stored in the training file in a 

random order, thus avoiding the introduction of unwanted systemic effects into the 

treining process. 

In addition to the training dataset, a test dataset was also generated which consisted 

of noise free versions of the five light excitations. as well as four new excitations 
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conesponding to lights placed at the four vacant corners of the light anay.  This 

produced a nine pattern test file corresponding to a full 3x3 gnd of lights- 

A network consisting of five inputs and five outputs was constructed which learned 

its representation from the training dataset. Initial network weights were randomly 

selected from a Gauscian distribution with rnean 0.5 and standzrd dewation of O. 1. 

The learning rate used for al1 simulations was ~=0.00 1. 

If the network is able to discover the ideal solution, each of the five output units 

should ultirnately learn to represent the excitation frorn one of the [ive light sources. 

That is to Say that each output unit should leam to act as a spatial detector for t he  

specific area of the input space in which a light resides. What wilt be of panicular 

interest is how a successfully trained network responds to the four corner patterns 

whtch were not rnembers of its original training set. Will the network be able CO 

generalize on the knowledge gained from the five learned positions in order to 

provide a useable classification of these four additional patterns? 

Hard Cornpetitive Learning 

The first algorithm tested on this learning task was hard competitive leaning. As was 

expected in light of our earlier studies. this algorithm ytelds consistently sub-optimal 

solutions. In these soIurions a subset of the output units positioned thernselves such 

that they represented the input vectors, while the remaining units were left unused. 

The precise nurnber of unused units varied depending on the initial values of the 

weights. With the weights randomized around 0.5 it was typical to only have a single 

unit o r  two unused. However, if the weights were initialized around 1.0 o r  more. 

only one unit would take responsibility for al1 LOO0 data points. thereby leaving four 

units unused. This example once again clearly dernonsrrates that HCL is strongly 

susceptible to the orphaned unit problem and will generally provide unsatisfactory 

results when presented with a complex input environment. 

DeSieno Frequency Sensfthre Compeüüve Leaming 

The second algorithrn tested was the DeSieno lmplementation of FSCL. For these 

simulations each unit's bias distance (B) was set to  0.0001, as before. and a bias factor 

(O of IO was initially used. The result was surprisingly poor network performance. 



Repeated training resulted in the algorithm locating the optimal solution in only 

approxrmately 50% of the leaming tnals. Upon further investigation i t  was 

discovered that the poor quality of the network's solution was a consequence o f  

improper selection of the bias factor. When this value was changed from 10 to 2 and 

the simulations repeated. the network was able to consistently locate the optima1 

solution. However. if the weights are now initialized in an area much farther away 

from the data. such a s  around the value 2.0. the network would consistently fail to 

utilize al1 units. It was necessary to increase the bias factor needed to near 70 before 

the network was able to draw al1 five units in a solution. Unfortunately. the solution 

achieved under these conditions was cornpletely unusable. Due to the high b i s .  al1 

units end up selecting identical weight vectors. This strange behaviour appeared to 

contradict the frequency sensitive nature of the algorithm. 

The reason for the unusual leaming behaviour is a direct consequence of the way rn 

which the conscience mechanism is introduced into the leaming process. The 

conscience augments the winner selection mechanism of HCL by adding the bias 

term into the distance coinputation (equation 7). That is to Say. the value which 

determines which unit undergoes a weight update is the distance from a unit to the 

input vector, mmus the value of the computed bias term. The strength of this bias 

term depends on the choice of the bias factor. If the bias factor 1s set LOO large. it will 

make an inappropriatety large contribution to the distance calculation, dominating 

the corn putation for even small differences in the winning proportion of the units. 

This resu1r.s in the poor solutions that were initially observed. Conversely. if the bias 

factor is made too srna11 the conscience will be too weak and will not be capable of 

influencing the computation enough to avoid the orphaning of units. 

This results in a significant problem. The main reason for using the conscience 

mechanism in the first place is to ensure that al1 units are contributing to a solution. 

If the bias factor is set too small rhis goal is not accomplished. However. if set too 

large al1 units are contributing, but the resulting solution is unusable because it 

doesn't take into account the intricacies of the statistics of the data distribution. This 

places us in a quandary. The bias factor must be large in order to use al1 the units. 

but it must be small to altow those units to learn sornething useful about the data. A 
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possible compromise may be to initiate the training procedure with a large b i s  factor 

to ensure that no units are orphaned. and then to reduce this value as training 

continues. thus permitting the network to fine tune the solution to better fit the data. 

However. this would further complicate the algorithm by requiring the addition of 

yet another adjustable network parameter, the bias factor decay. A s  well, it is unclear 

what should govern the tnitial size of the bias factor when beginning training. 

5.1.3 Kllshnamurthy Frequency Sensitive CompetWve Leaming 

tb an alternative to the  DeSieno version of FSCL. the Krishnamurthy tmplementation 

was examined. The fairness function used for these tests was F(uJ = u,, where u, is the 

nurnber of times unit i has won a cornpetition. This algorithm was found to work 

quite well, consistently locating the optimal solution to the task at hand. What makes 

this algorithm significantly different from the DeSieno technique is the fact that the 

fairness function is a multiplicative term in the distance calculation. as opposed to 

an additive one. This allows FSC4, to avoid the bias factor magnitude problems 

prevalent in FSCL,. 

In situations where the weights are initialized such that they place the  units far from 

the data. FSCL, wdl simply require longer training times in order to  allow al1 these 

units to become included in the solution, but they will definitely al1 be used. The 

only major concern here is training long enough for that to take place. A second and 

perhaps even more important advantage of this technique is the fact that it has no 

learning parameters which need to be adjusted (except for the ubiquitous leaming 

rate). This significantly irnproves the reliability of the training process by eliminating 

additional free parameters from the algorithm. 

While FSCL, successfully learns to identify the five clusters present within the 

training data. testing with the additional corner points identifies a further difficulty. 

This lies not with the network's ability to identify the data clusters. but wtth the 

winner-take-al1 form of the output activations. Due to the nature of these outputs, 

the network must select a srngie unit as the winner to represent the classification of 

any input vector. If the vector happens to be only slightly closer to  one unit then 

another, the first unit will assume full responsibility for that vector. As well. if the 



vector is far from al1 the clusters but marginally closer to one unit. that one unit will 

again take full responsibility for the vector and produce an activatton of 1 .O. This is 

not the most desirable result because it provides no information as to the confidence 

the network has in its classifications. To achieve that it would be necessary to replace 

the winner-take-al1 nature of the output activations with some fonn of sort actrvation. 

This was done by using the fotlowing activation equation: 

This equation was only used for the computation of the activation value and did not 

affect the method used in updating the weights. The traditional winner was still used 

for the purpose of performing these weight adjustments. 

As a consequence of this change the network was now able to provide a much more 

informative and useful classification of the input vecton. This benefit can clearly be 

seen in figure 37 which shows the network activations ustng the local representations 

of the W A  outputs on the left. and the distributed representation resulting from the 

use of equation 13 on the nght. The bottom cells (identical in both diagrams) show 

the input vector being applied. which is the top-left (TL) source in this case. A full 

shaded ce11 in this figure corresponds to an activation of 1.0. The network acttvations 

produced by each of the five output units in response to excitation by al1 ntne vectors 

of the test dataset are given in table 3. Of particular interest is the classification of 

the four comer patterns which are now represented as a combination of two of the 

five primitive States. For exarnple. the top-left comer light is being partially 

figure 37: Activations of the FSCLK network with a local and 
Gstributed representation of the same input vector. 



Table 3: Response h m  the Krishnamurthy FSCL network employing anahg activaîions. 

represented by both the top and left tuned output uniu. This use of analog 

activations significantly improves the effectiveness of the FSCL, algonthm. 

5.1.4 Soft Cornpetitive Learning 

The final algonthm tested was soft competitive leaning. Again, network weights were 

randomized to values around 0.5. and the variances of the radial b a i s  functions were 

initially set to 0.004 to be consist with the earlier low dimensional tests. It was found 

that SCL was capable of leaming this problem but that success in reaching the 

optimal solution depended on the proper selection of the variance. The initial 

variance of 0.004 did not provide very good results, but when this vanance was 

increased to values on the order of O. 1 the network was able to easily provide proper 

clustering of the training data. 

When presented with the nine vectors of the test set, SCL was found to produce 

excellent classifications of the four corner patterns. The inherent analog nature of the 

Gaussian activations provids a clear indication of the cornbined classification based 

on the five primitive States. Typical activations produced by this network for the nine 

test patterns are given in table 4. 

A s  this leaming task has demonstrated. a critical factor in the use of this algorithm 

is the selection of an appropriate variance for the Gaussian basis functions. I f  this 

parameter can be selected appropriately the algorithm performs well. However, as 

w t h  the choice of the bias factor in the DeSieno version of FSCL, the selection of the 

variance is actualIy a two edged sword. This value must be made small enough to 

ensure that the units span only a single data cluster, while at the same time being 



Table 4: Tpical activations from che SCL network for the nine vector test dataset. 

large enough to make significant advances toward the data in the case when the 

weights are initialized far from the data. To address this problem, the basic SCL 

algorithm was modified by introducing a vanance decay parameter which will atlow 

the network to begin training w ~ t h  a large variance. and as training progresses. shnnk 

this variance in order to refine the classifications. This modification has been 

emptoyed by others in the pastlwl and rs in many ways reminiscent of the 

neighbourhood technique employed by Kohonen in the self-organizing feature rnaps. 

However. as was already discussed. SCL differs frorn SOFM in that all units adjust 

their weights at every stage of the leaming process, regardless of their location in the 

network. 

5.2 Identification of Object Motion in a Matched Sensory Environment 
m m m m m m m m m m m m m m ~ m m m m m m m m m m m o m m m m m m m m m m m m w m m m m m m m m m m m m  

Having now tested the algorithms on 
TC 

stationary patterns, the leaming task was 

made more difficult through the introduction 

of motion. To achieve this. a new artificially 
cl 1 

generated training set was produced based on CL - - - - a CR 
the sensor and light geometry of figure 36. t l 
Each training pattern now consisted of a ten I I 
dimensional input vector made up of the [ive 

8C 
sensor values corresponding to a single light 

oninonelocationfollowedbythefivesensor @ure38:GghtmnGtiondia9ram- 

values for a single light on in an adjacent 
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Figure 39: Diagmm showng light motion tmnsitions used in testing nehvorû generaliiation. 

location. In the case of five Iights this corresponds to a total of eight unique light 

transitions as shown in figure 38. As was done with the stationary light datasets. a 

srnaIl amount of Gaussian noise was added to the caiculated values of the sensors in 

order to more closely mirnic the behaviour of a real sensor. A total of LOO0 patterns 

were generated for the training set. These vectors were randornly ordered in the 

training file so as to remove any undesirable systemic characteristics whrch may 

interfere in the training process. 

In addition to the training file, three different test datasets were also prepared. The 

first of these involved the eight noise free versions of the above transitions plus 

sixteen additional transitions corresponding to the inclusion of the four corner lights. 

Each of these lights adds two additional venicaI and horizontal transitions. The left- 

hand portion of figure 39 shows a11 24 of these (Manhattan) transitions. The second 

test dataset prepared was intended to test whether the network was capable of not 

only generaiizing to honzontal transitions. but also to diagonal ones. To achieve this. 

a dataset of sixteen vecton was generated which corresponds to the transitions 

depicted in the right-hand diagram of figure 39. The final datasets compnsed a nine 

vector file intended to evaluate how a network trained to idencify motion interprets 

the situation where no motion is present. In other words, the ten dimensional input 

vector consisted of two identical versions of the five sensor values. representing no 

change in the sensor state from time t-1 to c. 
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A single layer network consisting of ten inputs and eight outputs was constructed. 

& before. a learning rate of ~ = 0 . 0 0 1  was used for al1 training situatrons and the 

network weights were again randomized around the value 0.5 with a standard 

deviation of O. 1. I f  the network is able to locate the optimal solution rt should tune 

each of the units to detect one of the eight pnmitive light transitions. 

5.2.1 Hard Competitfve Learning 

The hard competitive Ieaming algorithm was examined first and found to perform as 

pooriy on the motion clustering problem as it did when confronted with the 

stationary pattern problem in the previous section. The network consistently failed 

to make use of al1 the units in encoding the training data. As before, this problem was 

exacerbated when the weights were initialized fanher away from the data. Based on 

these test it is clear that hard cornpetitive learning would not be an acceptable 

leaming algorithm for use on this or other similar tasks. 

Krishnamutthy Frequency Sensitive Compeüüve Learning 

The second algorithm investigated was the Krishnamurthy version of FSCL. This 

method was found to very reliably cluster the training data into the eight primitive 

transitions. A s  well. the generalization abilities of the network were tested on the 

twelve new transitions (to and from the four corner points). It was found that the 

network was able to appropriately represent these new transitions as a combination 

of the eight learned transitions. The Hinton diagram of figure 40 shows the resulting 

weight vectors. with a fully shaded ce11 representing a weight value of 1 .O. A list of 

typical activations resulting from the 24 test patterns is provided in table 5 .  

hs an example. consider the transition from the top-right corner position to the top- 

centre position (TR->TC). This transition is represented by a strong excitation of the 

transitions centre-right to centre (CR->C), top-centre to centre (TC->Cl. and centre 

to top-centre (C->TC). With the later two transitions being complementary. one is 

left to correctly conclude that the pnmary direction of motion for the light was [rom 

right to centre. As well. the fact that the two complementary transitions both 

involved the top light position allow us to further conclude that the right to centre 

transition occurred in the top region. It should be noted that though the 
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Table 5: Acti;vations of a FSCL, network in response to horizonta/ and vertical motion patterns. 

Figure 40: Hinton diqram of FKLK network weights 
following training on the motion detection task. 



. 
SIMLU~ONS OF CL FOR V&fON . 

ldrnnfimn of O b ~ u  M ~ i u n  in (1 .MrrtLhrd 'Ynso- Ennmnrnrnt . 

cornplementary transttions also both involved the centre position. this does not 

imply that the transition took place in the centre region because the nghc to centre 

transition is a primitive transition and would have been the only active unit had that 

situation actually occurred. 

Based on these very encouraging results the second test dataset contakning the 

diagonal transitions was presented to the network. As with the honzontal and 

vertical transitions just discussed. it was found that the network was able to 

generalize very well CO these diagonal transitions. When presented with one of the 

test patterns the network produced a strong activation frorn two of its units 

representing the primrtive horizontal and vertical transitions which together result rn 

the actual diagonal direction of motion. The complete list of network activations 

resulting from the application of this training set can be found in table 6. 

Table 6: Activations of a fSC& network in response Co diagonal motion patterns. 

Lastly, the FSCL, network was tested on the final training set which encodes the 

stationary excitations. In response to these test vectors. the network produced a 

strong activation for the two cornplementary transitions representing the TC. CL. CR. 



and BC positions. For the centre position, the network produced identrcal outputs 

from al1 eight units. In the case of the four corner positions the system produced a 

strong activation frorn the four units which constitute the two complementary pairs 

of transitions corresponding to that panicular corner locatton. The actual activation 

vaIues themselves are presented in table 7. The fact that the network is able to encode 

the stationary positions through an aggregation of motion detectors means that a 

robot (and perhaps even a biological system) does not necessarily requtre a separate 

detection mechanism to identify this behaviour. 

Table 7: Activations of a fSUK netwod in response to stdonary exutution patterns. 

Overall, the FSCL, algorithm performed exceptionally well on al1 facets of this 

problem. This outcorne is extremely encouraging gwen the simplicity of the 

algorithm itself. 

52.3 DeSieno Frequency Sensithre Cornpetitive Leaming 

The next algorithm to be tested on the motion identification task was the DeSieno 

version of FSCL. For these tests the network parameter values B=0.0001 and C=2.O 

were used. Weights were once again randomized around 0.5 prior to the start of 

training. Under these conditions, the network was able to locate the optimal solution 

on a number of training trials but was quite susceptible to becoming trapped in sub- 

optimal solutions. As was the case with the tests in section 5.1.2, the quality of the 

solutions dropped considerably as the weights were initialized farther away from the 

data. lncreasing the value of the bias factor was once again able to draw al1 units into 



a solution. but the solution achieved was unusable since al1 resulting weight vecton 

were identical. 

In those situations where FSCLD was able to locate the optimal solution its weights 

vectors were found to  be equivalent to those discovered by the FSCL, network. When 

the FSCLI, network was modified to use the analog activations of equation 13 the 

network's performance on the three test datasets was found, in this case. to be 

equivalent to those produced by the Krishnamunhy technique. 

Once again, soft corn petitive leaming was the last algorithm to be t e t ed  on the 

current leaming task. The initial variance of al1 units was set to O. 1. w t h  a vanance 

decay factor of 0.995. and a minirrturn variance limit of 0.0044. Network weights 

were initially randomized around 0.3. Following training the network was found to 

have correctly learned to identify the presence of the eight primitive directional 

transitions, assigning one unit to each. Unit activations in response to the first test 

dataset, are provided in table 8. Of note is the clearer ~Iassifications made by this 

network in comparison to FSCL,. This is mainly a result of the nature of the Gaussian 

activation functions used by this technique. In any case. it is easy to see that the 

solution is functionaily equivalent to that achieved by FSCL. 

Testing the network on the diagonal transition dataset also produces roughly 

equivalent results to those descnbed for FSCL, with the exception that the 

activations produced for the two constituent primitive directions of motion are 

rnaximally excited, while al1 other units produce a zero output. This same behawour 

was observed when testing on the stationary pattern set. The activations resulting 

from that test are provided in table 9. 

While al1 networks. except for HCL, were able to locate solutions to this problem. 

they did not ail reach those soiutions in the same amount of rime. The plot of 

figure 41 shows the relative mean-squared-error performance versus tirne for each 

algorithm. As was done in the low dimensional analysis, the error trace for the SCL 

algorithm is an adjusted version of the actual SCL error measure, based on t'ie known 

propenies of t he solutions space. Al1 four of these algorithms were trained beginning 



Toble 8: Advatrom of a SCL network in response to horizontal and vemcd motion patterns. 

Table 9: Activ~ons of o SCL netwok in response to stationary excitation patterns. 
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Kgure 4 7 : RdabVe MSE* performance of the four leuming 
algonthms with a weil matcfied sensor geometry. 

w t h  the same set of randomly genftrated initial weights. It is clear from this figure 

that not only does FSCL, produce a very good solution (corresponding to near zero 

enor), but it does so very quickly. Convergence is reached in less than 30 epochs. 

while FSCL,, and SCL required 50 and 85 epochs respectively. 

5.3 Identification of Motion in an Unmatched Sensory Environment 
m m m m m m m m m m m m o m m m m m m m m m m m m m m m ~ m m m m m m m m m m m o m m m m m m m m m m m  

Having examined the situation of a sensory system which is well matched to the 

geometry of the excitation source, attention will now focus on the performance of the 

aIgorithms under the condition of an unmatched sensory environment. The sensor 

arrangement that was used for these experiments is shown in the diagram of 

figure 42. As can be seen. an additional sensor has been added to bring the sensor 

count up to six, which is the same number of sensors available on the accual robotic 

system. However, unIike the robot. the sensors here are still arranged in a perfectly 

symmetrical manner relative to the excitation. AI1 six sensors possess a 125" field-of- 

view relative to the sensor's centre line and al1 senson are oriented perpendtcular to 

the sensor plane (facing the excitation). 



S i ~ ~ u n a ~ s  OF CL FOR ROBOT VWON 
tdznhfïuiaon of &Urltwn in an Unmardvd ' r r uu ry  En\trunmenr . 

Once again a training dataset was prepared 

which included both the current value of e 
the sensors and a single time delayed value. 

Sensors @ 
This results in an input vector in twelve @ e  
dimensions. A dataset of LOO0 randomly 

# ' a e 
ordered training patterns was generated, 

representing the eight transitions between 
@ a e 

the five basic light positions. Each of these 

vectors was augmented with a small 
figure 42: Unmatched sensor and 

quantity of Gaussian noise (a=0.001) to exatmon geometry. 

provide more realistic variation between 

modelled sensor values. In addition to the training file, three test datasets were also 

generated representing the Manhattan transitions. diagonal transitions, and 

stationary positions respectively for a full 3x3 grid of sources. 

5.3.1 Frequency Sensitive Cornpetitive Learning 

Given the poor performance of HCL on the more straightforward problems presented 

in preMous sections. we will begin this investigation with the FSCL, algorithm. The 

network under test consists of a single layer with twelve inputs and eight outputs. An 

optimal solution by the network should result in the system once again tuning each 

unit to act as a motion detector for one of the eight single pnmitive transitions. 

It was found that the algorithm was able to reliably converge to a successfui solution 

in approxirnately 100 epochs. Following this training the network's generalization 

performance was evaluated using the three test datasets. As before, the unseen 

Manhattan transitions were represented by the strong activation of three output 

units. These conesponded to the pnmary direction of motion as well as including the 

two cornplernentary transitions frorn centre to and from the area of motion. (1.e. For 

a transition frorn bottom-left to centre-left. the network excited the bottom-cen tre to 

centre. centre-left to centre, and centre to centre-left transitions.) The activation 

values produced here were only slightly different than those generated by the 

network when using the well matched sensor geometry. 



Tests with the stationaty position datasets also produced results consistent w t h  

earlier tests. tfowever. in this situation the activation3 produced for these patterns 

were not as clearly distinguishable as those produced earlier. Typical activation 

values are presented in table 10. As can be seen, panicularly with the corner 

positions (Ti. TR, BL, BR), the outputs are not as distinct as those presented in 

table 7. 

Thle 1 O: Activations of o FSCLK network in response to stutionory exutdon using an 
unmatched sensor geomeby. 

In the tests involving diagonal transitions. the network performed very wefl. These 

transitions were once again represented by the network as a combination of two 

primitive transitions; one in  the vertical direction and the other in the horizontal. 

The activations produced for this test were very distinct. more so than for the 

Manhattan transition tests. In terms of earlier simulations involving the matched 

sensory system, this network produced stronger activations for some patterns, and 

slightly Iess distinct activations for other. OveralI the performance of the systern on 

this case 1s essentially equivalent to the earlier experirnents. 

5.3.2 DeSieno Frequency Sensitive Cornpetitive Leaming 

When tested on this cIustering task. the DeSieno version of FSCL produced networks 

with equivalent generalization performance to FSCL in the situations where the 

system was able to successfully cluster the training data. In order to reliably achieve 

this clustering a bias factor of C= 10 was required for weights randomize around 0.5. 

As was discussed earlier. the reliability of the network in Iocating a good soIution 1s 



strongly dependent on the initial values of the weights and seleccion of bias factor. 

When the weights were randomized to values significantly Iarger than 0.5. reliable 

training was not achievable. 

5.3.3 Soft CompeWe Learning 

Finally, the clustering task was attempted using the SCL network. For this 

experiment an init~al variance of 0.2 and decay rate of 0.998 was used. Both of these 

values were setected empirically. Under these conditions the network was able to 

efficiently learn to cluster the training data into the eight primitive transitions. For 

srnalter initial variance. such as O. 1. the system had a tendency to become trapped in 

su b-optimal solutions. 

Table 1 1: Adivations of a SCL network in response to horizontal and vertical motion patterns. 



Following successful training the network was presented with the three test datasets 

and found to provide acceptable generalization performance in most cases. However, 

a few of the activation values generated have the potential of leading to 

misidentification. The activation values arising front the Manhattan transition tests 

are listed in table I L. Note that the output of unit 1 for the transitions CL->TL and 

CR->TR 1s only 0.044 as compared to the strong output (0.3LS and 0.6+1) produced 

by the other twü units in those rows. Similar behavlour was observed in the 

classification of the diagonal transitions and stationary light locations. though the 

smallest output produced in those conditions was 0.063 and 0.061 respectiveIy. 

Although the network can be considered to correctly generalize to these new vectors. 

the results must be used with caution in the case of SCL. This is because these srnall 

activations can easily be misinterpreted as a tack of excitation. 

In summary, the large variety of wsual events captured by the raw twelve 

dimensional sensory data is not an appropriate representation of the environment. 

The competitive learning algorithms reduce the multitude of possrbilities into a 

limited number of systern states. represented by the activations of the competitive 

units. This is a much better representarion of what is occurring in the environment 

(for example. teft to right motion). In the case of local representations. there are only 

as many states as there are competitive units. 

Based on the improved distributed representations. the connectton to vanous 

behavioural responses (for example, turn rightl is learned with supervision in a 

straightforward manner. The success in leaming these representations is much 

greater for sensors matched to the environment, as one would expect based on 

observations of animals which have evolved over long periods in a specific 

environment. 



xperiments with the Physical Robot 

H aving successfully shown that the algorithms are capable of correctly learning 

to ctassify both rnoving and stationary patterns in the simplified visual 

geornetries of chapter 5. the investigation next dealt with the geornetry of the actual 

physical robot. We first exarnined a simulated version of the robot's sensor geometry. 

then extended that investigation to include operation of the algonthms on the real 

robot hardware. 

6.1 Motion Detedon with the Physical Robotic Sensor Ceometry 
m m * m m e e w m m ~ m a m m m m m m m ~ m ~ ~ m m m a m m m ~ m m m m ~ m m m m m m w m m m m m m w w  

In the previous chapter the simulated sensory geometry was a symmetrical system 

ernploying sensors with identical properties. The sensory systems of the robot. 

shown diagtammatically in figure 43, is symmetric about the vertical centre line but 

not relative to the horizontal. Each of the grid units wirhin the diagram corresponds 

CO Lcrn in the real physical world. The sensor pairs are labelled with the positional 

names corresponding to the spider eyes which they are representing. 

The anterior media1 (AM) pair of 

detectors is modelled with a t 1 5 O  

field-of-view relative to the centre 

line of the sensor, which corresponds 

to the robot's OP805 

phototransistors. Similady, the Figure 43: Robot style sensor arrangement, 

anterior lateral (AL) sensor pair 



sports a 240" field-of-view and corresponds to the L14C1 phototransistors. ALI four 

of these sensors are oriented perpendicular to the sensor plane. The l a s  pair of 

sensors (PL) are modelled after the cadmium sulp hide photoresistors which provide 

a 180° field-of-view. However. unlike the other sensors this pair is rotated +90° and 

-90" along iu vertical axis and relative to the sensor plane. 

This new geometry was first evaluated on the stationary light clustenng problem 

before the task of motion classification was considered. Here the Input vector to the 

neural network consists of the six instantaneous sensor values corresponding to 

excitation from a cross shaped Iighr arrangement comprising five sources. As with the 

sensors, the properties of the grid of light sources was modelled after the real 

physical system which it represents. In the real light-board each of the LED sources 

is arranged on a regular grid with 3.5cm spacing. The side view of figure 44 

illustrates the relative position and view of the AL and AM sensors. and the spacing 

of the lights in relation to those sensors. 

Based on the described sensor- 

excitation geometry a training dataset 

was generated consisting of 1000 

patterns representing the sensor 

excitations produced by the five 

sources. Each pattern vector included 

a small amount of additive random 

Gaussian noise. In addition to the 

training file, a test file was also 

produced containing the nine sensor 

mure 44: Side v i e ~  of sensor-light board 
geometry and fieldsaf-view. 

excitations corresponding to a full 3x3 grid of lights. 

A six input. five output network was trained using the FSCL, algorithm. Weights 

were initialized to random vatues around 0.5. While the network was able to leam 

to cluster the training patterns for the five light positions. generalization of the 

system to the four unseen corner patterns produced potentially ambiguous 

classifications. The network was only able to provide a clear indication of horizontal 



posltion and produced an extremely weak response concerning vertical Iocation. The 

list of results in table 12 shows the activations obtained for these nine test patterns. 

Networks successfully trained with the FSCLo and SCL algonthrns gave soluttons of 

equivalenr quality. 

Tuble 7 2: Response from the fSC& network in the dussification of positionul patterns using the 
robot b a r d  sensory and light board arrangements. 

The system was lurther tested on the motion detection task. These tests were carned 

out on a twelve input. eight output network again using the FSCL, algorithm. The 

network was found to be capable of clustering the training data but. as with the case 

with the stationary tests, produced much less distinct classifications of the unseen 

patterns when compared with the earlier tests of chapter 5. The activations of 

table 13 show the networks response to those patterns. These values demonstrate 

that the network is abte to extract some general information conceming lateral 

motion, but is incapable of providing a definitive classification of the venical 

component of motion. 

The l a s  than stellar generalization performance of the network on the stationary and 

moving pattern problems is not too surprising when one considers the sensor 

geometry the system has at i ts  disposal. Due to the narrow fieId-of-view of the AM 

decectors and their vertical position relative to the excitation sources (figure 431, 

they will measure roughly equivalent light intensities for sources in the centre and 

bottom regions, while producing a zero value for sources in the top region. 

Furthermore. the left and right sources are also outside of the field-of-view for these 



Table 13: Activati'ons of CSCL, network in response to motion partem. 

senson in this situation. Therefore, the only discrimination that these detectors are 

able to make is between the top-centre and centre light positions. To exacerbate the 

network's difficulties in vertical discrimination, the AL detectors receive vinually 

identical excitations from the top. centre, and botrom sources owing to the distance 

from the sensors to the source. The final pair of sensors ( P h )  are ortented such chat 

they are only able to detect excitations on the left or  right. They produce a zero value 

for excitations in the centre of the light-board, In terms of lateml movement, 

however. the differential signal from the AL and PL do make it possible to identify 

motion in this plane. 

Based on this anatysis it is clear chat expecting the network to generalize to the extent 

that it can detect motion in any region is unrealistic given the current sensor 

geometry. However, the network does have enough information to allow the system 



to identify the presence of an excitation and to track its motion laterally. If only the 

lateral degree of freedom is considered. this 1s the type of behaviour that a jumping 

spider will produce.t3+l 

When testing other algorithms on these training tasks it was found that SCL was also 

capable of clustenng the training data and was able to generalize upon that 

information in order to detect lateral motion. However. the FSCL, technique was 

incapable of Iearning this same task. The histogram of figure 45 shows the 

generalization performance of the three networks on the motion detection 

expenments of the previous chapter when compared to those conducted with the 

sensor arrangement of the robot. To be considered to have correctly generalired. the 

pattern of activation values must lie above a single threshold selected across the three 

test datasets (Manhattan, diagonal, and stationary). This threshold value changes 

from algorithm to algorithm. but is consistent between the three tests on the sarne 

algorithm. The values shown for the DeSieno version of FSCL represent solutions 

obtained under the best possible weight initialization and algorithmic parameter 

SCL 
-- 

Figure 45: Ceneral i~~on properties detennined as percent of  novel pottems 
comectiv represented. Wes t  wJsible aiuonthm setbnas. 1 

œ 
Manhattan - 
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EXPERIMENTS WIïH THE PHYSICAL ROBOT : 
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tuning. As noted previously. wrthout proper adjustment most FSCL, experiments 

produce unsatisfactory solutions. 

As can be seen from the figure, al1 aigorithms are capable of successfully leaming 

appropriate representations tn the first two situat~ons involving the symmetnc sensor 

arrangements. For the third situation employmg the robotic style sensors the FSCL 

and SCL algorithrns provide closely comparable performance, while FSCL, fails 

cornpletely under these conditions. 

6.1.1 Leaming with a Modif3ed Robotic Sensory System 

The inability of the networks to generalize to ail aspects of the motion tracking 

problem is a consequence of the sensor geometrv used on rhe robot In order to 

provide the network with the tools with which to extract these propenies of rts 

environment, it was necessary to modify the robot's sensor apparatus in order to 

provide either additional sensors or to change the characteristics of the sensors 

already being used. It was this later option ihat was examined. 

By changing the lateral orientation of the modelled photoresistors from 190" to 4 5 "  

it was found that the FSCL, algorithm was able to not oniy cluster the training data, 

but also to generalize on this information in order to properly classify vinually al1 of 

the test data. Notable exceptions to this were the diagonal transittons involving the 

bottom source locations. However. for those transitions the network was able to 

correctly identify the lateral contribution of the transition, only fading to include the 

vertical component. As well. the activations produced when presented with the 

unseen transitions were nor as definitive as was observed when the sensor geometry 

was more closely rnatched to the excitation geometry. though one would certarnly 

expert this to be the case. 

The overall mean-squared-error performance of FSCk on the motion classification 

experiments conducted in both this and the previous chapter are summanzed in 

figure 46. As this figure shows, the leaming times get progressively longer as the 

geometry of the sensors deviates from that of the excitations. However, the most 



figure 46: Rdababve MSE perfomiunce versus leaming time for a 
FSCk network truined on the vurious motion detection tasks. 

.11 cases marked change ts between the precisely matched and the remaintng tests. In a 

the tearning times are quite short. 

6.2 Leaming in the Absence of Floating Point Computations 
m m m m m m m m m m m o m m m m m m m ~ m m o m m m m m m m m m ~ m m m m m m m m ~ m m m m m m m m m m  

Throughout this thesis the simdation work presented has involved the use of ffoating 

point computations. However. the MC68HC11 processor, which runs the neural 

leaming algorithm on the real robot, does not inherently support floating point 

operations. As was mentioned in section 4.3. the Interactive C programming 

environment does attow for the ernulation of floating point computations on this 

integer processor, but this significantly retards the learning. The most desirable 

option is to perfonn the neural leaming using only integer calculations and thereby 

avoid the overhead of floating point emulation. iiowever. it is not obvious that such 

an alternative is possible. 

In an attempt to answer that question, a specially modified version of the FSCL, 

algorithm was incorporated into the neural network sirnutator environment. This 



algorithm accepts sensory inpur in the fonn of integer values over the range [O.2551 

and produces *analogn activations in the same range via equation 19. 

Based on this equation. stronger outputs correspond to smaller activation values. in 

additron to using integer inputs, the weights stored by the network were also 

constrained to integer values. 

Training and generalization performance of this network was tested on an tnteger 

version of the five sensor motion classification problem onginally presented in 

section 5.2. Again, a LOO0 pattern training file was generated and presented to a ten 

input, eight output network. A learning rate of E =  1 was employed here resulting in 

very short convergence times (2-3 epochs). It was found that the network was able 

to successful cluster the training data and thereby identify the existence of the eight 

basic light transitions. Furthemore. tests of generalization on the Manhattan style 

transitions involving the corner Iights was also performed and these demonstrated 

that the integer computations did not hinder the network's ability to properly 

generalize to these previously unseen inputs. The activations provided in table 14 

show the actual responses produced by the network. Tests of diagonal transitions and 

stationary position yielded comparable results. 

The above process was repeated using the robotic sensor geometry described in 

section 6.1.1. Once again. the network was able to successfuIIy cluster the training 

data and to generalize upon that knowledge in the classification of the Manhattan 

transitions and stationary position tests. Performance on the diagonal transitions was 

comparable to that achieved with floating point computations, but again showed 

difficulties in dealing with transitions involving che bottom row of Iights. This is due 

rnainly to the sensor geometry and does not identify a deficiency of the algorithm 

iuelf o r  in i t s  integer based implementation. 



Table 14: Activations produced by an FSCLK network employing integer computations. 

Having exhaustively tested the Iearning capabilities of the neuraI algonthms in 

simulated environments, we were in a position to incorporate one of these algonthms 

into the actual physical robot. Based on the results already reported, it is clear chat 

the FSCL, algorithm is the most reasonable algorithm to implement in the real 

robotic system. It has consistently proven its abiliry to converge to an optimal 

solution, and is straightforward to implernent. To this end, a version of the algonthm 

was coded in Interactive C and downloaded to the robot for evaluation. 

Training was conducted in a dark room to avoid the ambient light interfenng w t h  

the excitations produced by the light-board. Figure 47 shows the expenmental setup 

used. The robot was positioned a distance of 10.7cm from the light-board and a 



mure 47: Tminhg of the robotic system. 

marte black surface was placed under it and the robot to minimize spurious 

reflections. The light-board was configured to iterate (sequentially) through the 

standard eight light transitions. In order to ensure that the network only trained on 

the transitions and not on stationary excitations. the system performed a simple 

cornparison of the t and t-1 sensor values and only passed these values on to the 

network when they were found to differ from each other. A srna11 threshold value was 

used here to keep sensor noise from being interpreted as a transition. 

The robot was trained in real-time on a total of 2000 iterations of  the eight source 

transitions. Following training. the resulting weight vectors were downloaded to a 

PowerBook cornputer via the HandyBoard's serial communications interface for later 

analysis. In addition to this information. 1000 raw input vectors from the robot were 

ais0 captured and transmitted to  the PowerBook. These vectors were lacer supplied 

as inputs to the neural sirnulator running the integer version of the FSCL, algorithm. 

The s~rnulated network was trained for two epochs on  the LOO0 pattern and the 

resulting weight vectors were then compared to those received frorn the robor. This 

cornparison showed :hat both systems produced almost identical weight vectors. The 

fact chat the vectors do not match exactly is due to the fact that the  two networks 



were not trained on precisely the same 2000 data patterns. As well. dunng training 

of the simulated network it was observed that the weight vectors undergo a small 

arnount of cyclical oscillation. This is most likely due to the ordered presentation of 

data patterns. as opposed to the random ordenng use in other simulations. 

Following training the light-board was reconfigured to allow for presentation of the 

24 Manhattan test transitions. Due to the nature of the robot's operating envrronrnent 

it was difficult to directly observe the robot's response to these test patterns. To 

facilitate a more straightforward evaluation of the learned solution, the robot's raw 

sensory response to the 24 test patterns was recorded and communicated to the 

PowerBook. Since it was found that both the actual robot and the sirnulated version 

closely agree. the recorded test patterns were presented to the sirnulated network and 

the resulting activations examined. These activations can be found in table 15. As 

this tabIe shows, the networks were able to clearly learn six of the eight transitions 

present in the training data. but had difficulty with those transitions involving the 

top source. The generalized responses show correct lateral classification but rather 

am biguous vertical classification. This behaviour is attri buted to the poor dynamic 

range of the AL phototransistors. Without a significant contribution frorn these 

sensors it is virtually impossible for the network to extract venical information from 

the observed patterns. The AM sensors provide some information owing to their 

limited field-of-view, but this t u m  out to be insufficient. 

In summary. the computational limitations of the physical mobile robot 

implemented here were not responsible for the robot's difficulties in leaming the 

above problems. The FSCL, leaming algorithm perfonned well in spite of both the 

limited precision and lirnited rnemory resources available. Instead. it was the sensory 

system which ultirnately cunailed performance. 



Table 15: Activations produced by an FSCLK network empioying intqer cornpututions and using 
tme robotic sensory values. 



Condusions and Future Work 

This thesis has examined the theoretical propenies and reported experimental results 

surrounding the use of competitive leaming in the unsupewised extraction of visual 

representations for autonomous mobile robots. The performance of four algorithms 

were evaluated in the context of both simple two dimensionai problems and higher 

dimensional tasks involving modelled robot vision. TraditionaHy. neural algorithms 

are compared on high performance floaring point processors wtth vinually unlimited 

memory and energy resources. and evaluated according to ultimate errors and 

perhaps speed of convergence. The situation in our mobile robots (as in many other 

portable cornputing situations) is quite different. Here it is necessary to take account 

of limited precision, limited memory resources and restricted energy (battery) 

budgets. Which algorithms are most effective under these conditions is established 

in this thesis for the first time (at least for input-output systems comparable to the 

current robots). 

In order to achieve these results, it was necessary to design and butld a suitable 

mobile robot, to select a reasonabte sensory system (based on the jumping spiders 

which were studied at some length). to design a suitable environmental stimulus 

system (the PIC controlled light board) and to write a significant piece of software. 

One exarnple of the significant results achieved through this process was that, using 

competitive leaming algorithms, the robot could properly represent stationary 

patterns, having been trained only on moving ones. 



With regard to  the performance of the individual atgorithms, standard cornpetitive 

leaming, though computationally efficient. has been shown to possess inherent 

limitations in its ability to solve the vision based tasks investtgated in this thesis. This 

is primary a result of the algorithm's propensity to orphan units and thereby produce 

generally poor solutions. The inappropriate allocation of systern resources is a direct 

consequence of the simple winner-take-al1 nature of the approach, which provides 

no mechanism to ensure effective use of al1 units. This situation genera!ly arises in 

response to poor initialization of the network weights. 

In contrast. soft competitrve learning was found to produce good solutions to most 

problems, though it does require careful selection of network parameten in order to 

achieve these results. Specifically, the quality of the solutions were found to be 

dependent on the choice of variance used by the radial-basis-function units. 

Ernploying a vanance decay factor helped to reduce the effects of this problem. The 

most significant drawback to the use of this algorithm in applications such as mobile 

robots is i ts  complexity. A large amount of computation is required in the calculation 

of network activations, owing mainly to the need to compute an exponential 

function. However, it was discovered that this limitation can be reduced by 

employng lookup tables in place of the exponential with no significant loss of 

performance. 

As well, the issue of appropriate network size was addressed in the context of SCL 

and it was discovered that this algorithm was able to effectively distribute the 

available units over the data. even in the presence of a surplus or shonage of units. 

As well, it was further suggested that an optimal number of units can be selected by 

intentionally supplying the network with a surplus of units at the stan of training, 

and later pruning the network in order to achieve the optimal network size for the 

particular data being clusterrd. 

In addition to standard and soft competitive learning, two venions of frequency 

sensitive cornpetitive leaming (DeSieno and Krishnamurthy) were evaluated and 

found to produce markedly different results in contrast to the superficial similarity 

of the two techniques. Through experirnent it was demonstrated that both of these 



algorithrns are capable of learning to solve challenging vision based tasks. but that 

the solutions achieved by FSCL, are generally superior and require less computation. 

It was further observed that FSCL, required careful selection of the bias factor in 

order to achreve acceptable solutions to these problerns, making this algonthm 

awkward to use in many instances. In fact, in situations where network weighrs are 

poorly initialized, the way in which FSCLo incorporates the frequency dependence 

as an additive component of the distance calculation makes it incapable of locating 

useable solutions. It may be possible to correct this shoncorning by inrroducing a 

bias factor decay. 

Unlike FSCL,. FSCL, was able to reliably locate good solutions to even the most 

challenging test problerns presented in this thesis, and only produced sub-standard 

results when using very high learning rates. The fact that FSCL, inctudes the 

frequency dependent propeny of the leaming as a multiplicative component of the 

distance calculations avoids the difficulties encountered by the FSCL, approach. 

Furthemore, the simplicity of the algonthm makes it attractive for use in 

cornputationally restricted environments. 

Another unique contribution arising from this thesis was the modification of both 

F K L D  and FSCk to use analog activations in place of the winner-take-al1 activations 

present in the original irnplementations of these aigorithrns. This conversion from 

local to distributed representations allowed the networks to more correctly represent 

the data distributions being rnodetled and thereby provide better generalization to 

novel input patterns. 

For experiments involving the physical robotic system, the FSCL, algonthm was 

seIected based on its reliability and modest computational requrrernents. These tests 

demonstrated that the algorithm is capable of operating in environments which 

provide only integer arithmetic and both limited memory and computing resources. 

It was also found that the robot was able to learn a subset of the vision task presented 

to it. Its failure to completely solve this task was due to limitations of the robotic 

sensory apparatus and not that of the learning algorithm itself. This is not a problem 

with the number of sensors selected for this robot. but rather the properties of the 
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specific devices used (Le. L14C1 phototransiston). The use of six simple sensors 

provides a much more complex and less ambiguous representations of visual scenes 

than using only two. Too few sensors impoverish the representation and too many 

sensors require a huge expansion of the training data. In interesting problems these 

inputs are hrghly correlated and the complexity of the problem grows exponentially 

rather than linearly in the number of sensors or input dimenstonality. 

What we believe is new and most valuable here is the realization that the vision of a 

simple mobile robot with multiple sensors (and hence a large input dimensionality) 

can be based primarily on competrtive learning at all, and that this forms an efficient 

representation for subsequent (supervisedl Iearning which associates these intemal 

states with motor responses. This approach is quite different than that typically 

employed with vision in robots. 

The robotic vision task presented in this thesis. though challenging. is only a basic 

fint step in the development of adaptive visual system for mobile robotics. While it 

demonstrates that reasonable adaptive vision is possible, there is still much work 

which can be done in ternis of both the sensory systems thernselves and how these 

are used by the robot. The flexibility of the light board allows for significantly more 

complicated visual experiences to be investigated. This. coupied with the expansion 

of the robot's sensory environment through the introduction of additional tirne- 

delayed inputs, would permit rhe investigation of much more complex visual 

phenomena. Even in the absence of motion on the part of the robot, the richness of 

the visual experiences that can be generated are immense. 

Permitting the robot to move in response to its visual environment extends the range 

of visual situations greatly. The fact thar changes in the observed sensor values are 

now a result of the physical motion of the robot introduces additional complexities 

which need to be investigated. The ability of the robot to move has a direct impact 

on what is seen by the sensors, and this can aliow the robot to choose what it looks 

at based on how it orients itself in the environment. Such behaviour has been 

observed in spiders and other animals, including humans, 
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In the context of this thesis the characteristics of the robot's sensors have been 

assumed to be fixed. However, it is well known that these characteristics can change 

over time owing to a variety of effects such as temperature or simply aging of 

components. The adaptability of the neural algorithrns makes them capable of 

compensating for these changing behaviours. However. there are a number of lssues 

relating to these changes which should be examined. Specifically. how quickly can 

an algorithm reliably track changes in sensor values? 

As well, through the course of this thesis it became quite clear rhat FSCL, is an 

extremely robust algorithm. It has demonstrated an ability to solve virtually al1 

problems encountered. In fact, it has performed so well that the bounds of its 

capabilities remain largely undetermined. It would therefore be instructive to 

perform further testing on this particular algorithm in order to better identify the 

extent of its capabilities. 

The present work has involved an attempt to improve the design of an artificial 

creature (for practical applications) by studymg the anatomy and behavtour of a 

simple biological animal. A more ambitious direction for future work on this subject 

is to reverse this process, and to ernploy a hardware-software system such as that 

developed in this thesîs to explore the algorithms that may be at work in a real 

animal. Physiologists know a great deal about the anatomy. and function at the 

molecular and ce11 levels. of animals. Sirnilarly. behavioural biologists and zoologists 

know a great deal about the behaviour of animals in accomplishing therr goals of 

foraging, escaping from predarors. counship and reproduction, grooming and other 

s u ~ v a l  tasks. What is poorly understood is the high-level algorithms which connect 

the physiology with the observed behaviour, The current robot can be extended in 

rnany ways in terrns of sensory systems. locomotion, cornpurational precision, 

amount of available memory. etcetera, and the environment can be extended easily 

beyond the simple light board apparatus designed in this work. Experiments can be 

conducted which in an abstract way rnirnic the behaviour of animals, and these may 

be connected to cornparisons among algorithrns for learning, classification, control 

or other signal processing. 



cmausms AVD F L ~ E  WORK 
Furun Work , 

Finally, in addition to the scientific findings. this thesis has resulted in the 

production of the Claymore neural network simulator. While this software worked 

well for the simulations conducted, there are many additions which could be 

introduced to further improve its usability in future studies. These include the 

addition of new neural algorithms, automated weight tracking, integrated plotting 

capabilities, and the ability to simulate hybnd networks (networks using different 

atgorithms in different layers). 
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Algorithm Source Code 

Al .1 HCL Header File (HCth) 

- This file contains the algorithm spacific headar inforaiacion 
for the HCL neuruï netwrk algori-. 

/ *  Ngorichm Çpscrfic Resouca Numbers * I  

#define rHCLALgorithâettingsDtabg 132 

seructHCLnecroaDaCa I * N a J R O N * /  
( 
fioac cotaifnpuc: I *  Sum of al1 veighted inputs co the neuron * /  
I ;  

typaicf rtruct ttçtrieuroaüata HCtnewonOaca; 

scruct HCLsyndpseData / *  SYNAPSE * I  

[ 
float diffarance: 1' Stores the value lweight-input1 -1 

I  ; 
cypadaf scruct HCLsynagseData HCLaynapseDaca; 

s~rucc HCLiayerOaca I *  UYER ' 1  

c 
neuron *wiuner; f *  Pointer co ch@ nauron v î ~ f n g  the cumpetrtion *! 
1 : 

typedef struct HCLlayerDacr HCLlayarOara: 

scrucc HCLnetworkDaca f *  HFIWORK * /  

( 
f loac epsi Lon ; / *  Network Leatninq rate - /  

t ;  
typaciet struct HCLaetworkData HCtnecworkDaca: 



A1 2 HCL Algorithm Code (HCLc) 

This file coacains che rlgoricb specrfic raucines for che 
mmulation of the HCL neural necuork alqorichm. tC 

* contains no code spccific Co che conscruccion of the 
network ic self. fc only providaa chu funcrions necessary 
for LeArnrnq. Netuork construcclon rouciaes reifâe la - -At s h . c  module. 

.................................................................. 

" This funccroa parforma dny inlciallzatton necessary w h e n  a 
layer data record rs creaced. tugorithm &pendencl 

0.  

** This funcclon parforau any iaztialization necessary w h e n  a 
* *  neuron &ta record is creacoà. (Alqottcbm dependenc) . . ......................................................................... 
int HCtinicNeuronDaca tneuron *tbeNeuron 1 

( 
if {(CheNeuron-data - aallociaireoftKtne~~~onDacal I l  -- NUUl 

[ 
diet-Unable co allocace nacesaaty resources -- inicNeuranData'1: 



-* This function psrforms aoy inictal~ration necesslry uhea a 
a *  synapse data record is creaced. (Alqorichn dependancl 
*- 

- HCLcomvuteSums 
0 .  

- *  'Fhls Lunczion Qes the Loruard propaqacron chrouqh a necuark. 
- O  cocnguctnq the totri inpuc for eacb untc aad deterPinlng Che wxoaar 
** for tdch layer. This is $as8 1 ot the necwrk compucacions. fc -- recurns the necvork arror rasulcing from chat opcracton. . 

vord HCtcompuceSuos (necwrk 'nec l 
( 
layer 'LayerPcr: 
neuron 'neuroaPtr. *uimarPcr: 
~ynagse *synapsePcr : 
floac :ocalInput: 

O- This fuaction traver8ei the aecwrk and secs the activacioni of alL 
* -  murons CO the a~propriace values. X C  is callad afcer coinpucelunu. 
* *  This is pars 2 of the netuork compucacions. 
.O 



votd ~c~qadat4Acttvatioad tnatdork *net I 

Layer LayerPtr ; 
nauron *neuroaPtr ; 

layererr - net-*layars--next; I O  51up cha ftrsc Layer sxnce LC rs the ~nput tayer - 1  

whrla 4layerPtr !- -1 1 -  Traversa l-rs - f  

[ 
nauronPtr - LayerPtr-rnaurons: 
uUle tnruronPtr ! - M J U )  Traversa naurocu I 

( 
nauronpcr-~accivacion - 0.0; char old accrvacio~ - f  

nauronPtr - neuronPtr-~naxt: 
b 

( (IfCLiayerData - l layerltr--ta) -.vtnner--sctivac~on - L .O; 1' Sac vrnner's act;vacron - 1  

LayerPtr - LayerPrr - =nut ; 
1 

i 

* *  This funccion -tes Che mklgtits for the vrnnrng unit rn each layer. .. ......................................................................... 

layerPcr - nec->layars-~nexc: 
while i LayarPcr !- RUtt) 1. havarse layers 

f 
mapsePtr - i ( HCLiryarData * ) LayerPtr-&ta1 -mmuiar->rynapsaLn: 
while (synapscltr !- NULL) / O  Traverse synapses of viaaar * f  

( 
syaap8ePtr--ighe -- (tHCLnetwrkDaca *)nac-datal-~apsiljn ((HCL.ynaDseData ')rynapsePtr 

.data) - a f  ference: 
synapsaPcr - ~ s e P c r - * n e x t I n :  
1 

layerPtr - LayerPtr- >next : 
1 

t 

* *  Applies the sec of input patterns to the network and cdls 
.* comgmtesunu. UpdateActrvaCions and ugdaceWeighcs CO perform the 
" learning. 
.* 

/ *  Sat poiacar Co the first invue vactor richin the dacaset. 
thment - theDatanet -xiata; 
net-serrer - 0 . O :  " ClaU ttta network error. - 1  
rhileralemenc !- HULL) 1' Agiply  each input vector rn turn. * /  

indix - 0; 

HCLcompu~aSuma t net : I *  Coaputed the weightcd SUIES for each aeuron. *I 
HCLupdataAetivati0n~(n8t): I *  Updata all neuran activations at once. - 1  

if (!theNat->batch) t f  weighcs ara to be updated in barch m o d e .  * /  
ffCLupdaccweighcs~net); /. than &net do ic hure. * f  

b 
r f ( thmat - -batch) 1' -te ueighrs here uhen an bacch mode. - /  



**  AppLit?~ Che ap.cified vaccor nunrbar CO Che necwrk dnd c a l s  HCLcomputeSuw and 
" H C L u ~ t e h c t i v a c i o ~  to accuaily pcrform clte campucacions. 
**  

- J O L ~  IttXappLyVecror tnecwrk *net. dacaset *theDatasec. rut o u t o ~ r l  
[ 

fnc iadax: 
neuon chanleuron : 
dataElaeut .eLemenc; 

/ *  Set pointer CO Che firat input vector vrthin the datasec. - 1  
elœenc - CheDat&set-data; 
iodkX - O: 

!- v.ctorNuinbarl . *  Locate the ~paclfied input vector. - /  

eLeœent - alement - ~next : 
chaeuron - net-stayers-wmurorur 
tndsr - 0: 
uhile(theNeuxon !- NULL) / *  Sec Layer O -1  

f / iCcIVat~oM - 1  
thcEieuron-~accivarioa - elanenc-rrnputData[Lndtx**l: / O  cqual to the ' 1  

theNeuron - cheNeuron--nexc: f * the inpuc I 

f 1- vector. I 

HCLc-utestma (nef 1 : Conputu1 the wighttd sums for each neurori. * f  

HCLu~caActivacionirlaec); / O  Vpdace al1 neurou actrvatioos at once. * I  

t 

" Prrncs Che algorithm svecrfic variabLes to a scrinq and raturas that string for display. 
*. 

vord %C~a.mbleScringa(neCwrk *nec. char *Chestring) 
I 

if (net ! -  N[TLL) 

sprincf(theStriag. ' H a r d  (Standard) CL\r\rLaar;;;,- Race iepsrlon) - \f\ro. 
ItHtLnetuarkDdra *)nec->data)-.epsiLonl: 

f 

......................................................................... - HCLSelALgorithmParamecerText .. .- Prinrs Che algorich specific variables CO a string and returns that string for display. . * ......................................................................... 
vo td HCtSecAlgorrrhmParameCerText ( iat p a r a m e c e r W r ,  unsigrmi char *theTuri 
I 

char *thccPext: 

......................................................................... - HCLGeCAlgorlc!mParrnaterTsxc . 
* *  Priats the algorich specific variables ta a strraq and rcturns chat srriag for display. 
* * ......................................................................... 



- Reaeta .ny necwrk  pa ra i e t e r s  so chat iaarning operaces i n  che same way i c  m u l d  
" have i f  ch@ necwrk  was deletad and aa idenetcal  network constructeci. 

0 

void H C t . R e s e ~ q o r t ~ b ~ a ~ e C e r s  r I 

I *  For c h i s  a l g o r i a  hsve nochiaq eo do here. 
1 

A 2 1  FSCL, Header File (FSCU).h) 

Claymore - -  frrquencf Sensitive Coagccitive b m i n g  Algorichm 

* fhts f i l e  conta i ru  che algorichm -if i c  header informacion 
f o r  t he  P X L  neural necvork algorithm. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 * Algorithm âpecif i c  Resouce W r s  * l  

adef fne  r P X W g o r i ~ a c t t n g s I ) f a l o g  130 

enum ( I *  Aigorithin Seccings Mnu Item Nuber s  ' I  

kPXUlgorrtbaiEpsilon - 1. 
kFSCLAlqoritbnCo~cience - 2. 
ktSCLAlgorithEiiaa - 3 
1 ; 

sc ruc t  ~ s c ~ ~ e u r o x m a c a  r- NEURON - 1  

( 

f l o a c  cocalfnput; I *  Sum of aï1 rarghceci i npu t s  co Che neuron ' 1  
f i o a c  winningProportion: / *  Fraccion of clme Che neuron v ins  a c o ~ c i c i o n  ' /  

f l o a c  blaseUrotalInpuc: / *  Suu of a l 1  ue:ghteà inpu t s  minus biaa Cern for  ch18 neuroa ' 1  

i ;  
cypadeL s c n i c t  PSCLneurorrDaca FXZneuronData: 

s t rucc  PSCUynapseData t *  SYHAPSE - I  

( 
f l o a c  di f ference:  I *  Stores che value t n i g h t - i n p u c l  * /  
i :  

typcdaf s c ruc t  ?SCLs.i&p~hDaCa PSCLayndpseData; 

s t m c t  PSCLLayerData I -  U Y L R  * t  
r 
neuron *winner: Pointer t o  the neuron wlnniag the competition Fndepeadec of conscience ' f  

neuron *updaceWianer: I *  Pointer t o  neuron wlnning competition unàer influence of conscience ' 1  

rnc numNeurons: I ' A count of tbe number of neuronr ln t he  layer  'I  

f l o a c  normFaccor: / *  Weight noraal i ta t ion value  * /  
: 

cypedef scrucc PSCLlayerData FSCLlayerDaca: 

scrucc PSCLnecworkDacr / *  HFRlORlr * I  

[ 

f l o a t  epsi lon;  I *  Netvork Leafninq race  *I  

fLoac propor t to ludjursaent ;  I* Conscanc decarminmg rc l ac iva  scrength of consclence 'I 
fLoac bias laccor :  f *  Constant t o  d e c e d u e  bfas s t r eng th  - f  

1: 
typeclef s t r u c c  PXtnecuorkOaca FSCLnetworkData; 



A22 FSCL, Algorithm Code (FSCW.c) 

Thls file =ontaias the algorichni rpactfic roucrnea for the - simulation of the P m  neural n e t ~ r k  algorrçhn- Lt 
contaxns no code apecific co chc constructaon of the 
Dervork r t  self. rt only prwtàea the tuocrions necesSacy 

* for iearnrng. Netrork construction ruutmes reside Ln 
* the sim. e module . 

- This funccion p a r f o t ~  any rnitirlizatton necessary *en a 
" netwrk daca record ia craacad. tAlporit4m dopendencl . . 

" fhrs fuuctron performs any rnitializacron necessary uhen a 
- *  Layer data record is crcared. (Algorithni âegcndenii .. 
rnt PSCLinictayatDacsllayer *thetsyerl 
( 

r f  itchetaycr-zdaca - ~afloctsizeoElPSCLlayerDaeaI~l *- NUU) 
1 
diei'Uuable Co allocace necesnary resources -- LnltLdyerDaCa'): 
recurn (MALWC-FAILED) : 
1 

rIPSCL1ayert)ata *)cheLayer-&ta)-zufnner - NüLL; 
i(PSCL1ayerDaca *ltheuyer-dtal->updac&imer - t4UL.L: 
c l PSCtLayerDaca * 1 CheLayer- &ta1 -rnWeurons - 0 ; 
rrcurnl01 : 

1 

- *  PSCLiniWeuronDaca 
.* - This tunccion parfoima aay inieidtzacion necessary vhan a 
- *  neuron data record 1s crerced. (Aigorithm dependenti . 



This funccion does the forward propsqatioa chroqh a necwrk. 
* *  compucing cha cocaL input for each unic a d  determiniop che rtnnar 
* *  for each Layer. This 1s L af the natvork compucacions. Kt - raturas the aetuork error reaultiog from char operatioa. . * 

w t d  P S c L ~ ~ u c e S ~ ~ ~ ~ n e c w o r k  *necl 
t 
Layer *LayerPtr; 
neuron *neuroaPtr. *winaecPtr. ~updacaWinnerPtr: 
synapse -synapsePcr: 
float totalfnpuc; 

layerPcr - nec-~layers-wtaxc: 
while (layetptr !- NULL) I *  Traverse the Layera ' 1  



" Titis funccron traverses Ehe netwcrk and secs Che actrvatrons of ail 
* *  aaurons CO che aOproprraca vrlues. ~t rs callui after ISCtcoinpuceSums. 
* *  This rs p u s  2 of ch. aacwrk co~ucscionr- 
**  ......................................................................... 

vold ?SCtupdac~civationslnetwrk .net1 
1 
rayer LAyerPtr; 
neuron 'neuroaptr : 
Lloac uannerProportion; 

Layerptr - nec-wlayers-mnext: / *  Sîup che firsc layer rince LE LS the rnpuc layar ' 1  

while ilayarPtr !- Mnti I o  Traverse Layerr ' 1  

[ 
neuroaPtr - layerPcr - -neurons : 
wianerproporcion - 1 1 PSCLnewonDara * ) ( t PSCLlayertIrta I layerptr-dacal -wraner-&CA) - 

.vrnninqProporcion: 1 -  sava wînners proparcion valua for later * /  

whlla IneuroaPtr ! - WULLI I .  Traverse neuroas *( 
t 
1 -  nauronPtr-waccivacton - 0.0:  / *  C l a u  old actlvrtlons - 1  

neuronptr-waccivation - (1.0 I i ~PXLneuronData *lneuron~cr-&cal-rcotaLInpuC) I 

ilTSCLlayerDaca *llaprPtr-etal-~noWactor- 
((PSCLaeurOPDIta -1aeuroaPtr-~cal-wi~iaqPro~Ction -- 

ItfXLaetwrlrDaca *)na~-&cal-*proportioMdjus+nant O ( IPSCLneuronData *InauronPtr--data)- 
wtnninqproportion; 

nauronPçr - aeurooPtr-wnext: 
1 

I D  ((PSCLlayerOaca *)LayerPtr-&cal-winner-*accivacion 1.0: 1 .  Set rinner's accivatlan 
i(PXLnaurollOaca ~l((fSCtLayerData -ILayerPtr-&cal-wimar-+dacal-~vinningProportfon - 

winnarProportion O 1 (rXZnacwrlrDaca *laeC-&ta) -~rcportlonAdjusuient I L . O  - 
utanarProgorcion1: 

layarPtr - LdyerPtr-xiexc; 
1 

t 

......................................................................... -- PSCtdoEpo~b 
.* 
* *  Applias chu set of taput patterns to Eha natwork and calla FXLcoapucaSuas. 



/ *  Set pamcer co the first Lnput vutor nithin che dacaaet. ' 1  

elment theD.casec --ta: 
nec->errer - 0.3: t g  Clear the aecwork error. * /  
utritetelemenc !- NUU) t *  w l y  each tnput vector ta curn. - 1  

{ 
rridu - 0: 
theNeuron - nec - >layers- xmuronr; 
whiletthcPSeuron !- NuLL) I -  Sec Layer O 

( 1. a~clvatians 
theNeuron- activation - elaoenx-*i~cData[inda*+-1;  I *  equal co the 
theNeuron - ~haNeur0n- *next: I *  the rnput 
1 1 veccar . 

elemenc - alement - mexc : 
FSCLeoinputeSunrs ( nec 1: I *  Coniputuï the ueighced sums for eacà aeuroa. * f  

P S C L u ~ t ~ t i v a t F o a s i a e t ~ ;  I* W r e  &.il neuron ictivatrons ac once. * /  
if ( !th8Net-*ùaechl I *  I f  raighrs are co ba updaceà Ln batcb mode. '1 

PSCtupdaccWeights{nrc): f* then &n'c do Ir here. ' 1  

t 
tf ( t h e t  -*bacch) I o  Updace weighrs here d e n  in bacch mode. 
PSCLugdatewetghtsinet); 

1 

- Awlies the specified vector number ta the necwrk and calls PSCLcompuceSuma and 
" ?SCLugdateAccivacions CO actualLy perfozm the computatioas. 
.* 
. * * * * O  ................................................................... 

votd FSCLdpplyVeccor (netwrk *net. datasec *C!leDatcust. iar v e c t o ~ r  l 
( 

1' Sac pornrer CO the first Lnput vector wtthin che datasec. * r  

element - thahtaset-data: 
index - O; 
while(iadex-0 !- v e c t o r ~ e r ~  1' Locaca Che spccifrcd rnput veccor. '1 

elemanc - elcnienc-rnexc: 
theNeuron - net-rlayers-waeuroas: 
i n d u  - O: 
uhilefthaNeuron ! - NCiU) I *  Set layer O *f 

J * activatians ' 1  

thcNauron-~acrivactoa - element->inputOata[~odext-I; J *  -al to che 
theNeuron - chcNeuron- >net; / * t h e  rnpuc '1 

1 I *  vector. * I 
PSCLco~putaSuais(nec~: I *  Computed the ntqhted sums for each ueuron. * /  

P S C L u g d a t ~ t i v a c i o n s ( n e t ) ;  1' Clpdate ail aeuron acxtvations at once. ' 1  

1 

........................................................................ 
" PXt.JaembleStrings 
* * 

* *  Prrnts the algorrcbn specific variables to a strrng dnd retunis thac string for display. 

vold PSC~sa iab l e s t r inqs tnecmrk  *nec. c h u  *theStrrnq~ 
I 

Lf tntr !- N U )  
sprLntf(cheScring. -Frequency Sensitfve CL tDcSieno)\r\rtaarninq Race cepsrLon1 

Proportion Factor (8) - tf\rBias Factor (CI - \ f \ r* .  
I IPSCtnecrorkData *)net -&ta1 -wpsilon. i (PSCtnexworMata 1 nec-xiacal - 

+proporci anAdjustmeat. 
( (PSCLaecuorkData *)nec-&Cal -*bids?accor I ; 

t 



" Priacs  Ehe algorithm s p e c i f i c  varrables  t o  a s t r i n g  and re turns  chac scr lag for d ~ r p l a y .  .. 
void QSCtSetAigorrtkaPardmeee~ext ( Lnt pdrdmecerNumber. uriaigned CS- 'thdPext l 
I 

char -checText : 

Pr tn t s  the  algorichai s p e c i f f c  var tables  CO a s t r r n g  and recurns chac srring for d i m l a y .  . . ......................................................................... 

Resets any necwork paraniecers so chat Learoiag operaces i n  the  sanie way LC wuLd 
have i f  Che necwork wai dele tad and an i den t i ca l  network construcceci. 

0.  

votd PsCLResetAlgor~thmP~ameters { I 
I 
I *  For t h i s  algorithm we have nothing c l  do here. ' 1  

1 

A.3.1 FSCL, Header File (FSC1K.h) 
.................................................................. . 
* Claymore -- Frequency Sansf t ive  Coriipatittve Leaniing a g o r i t h m  iKrrshnaDurthy) 

This f i l e  contains  Che a l g o r i t h  s p s c i f i c  heuder information 
for che f5CL neural  n e t w r k  algorithm. 

.................................................................. 



s c r u c t  PSCulayer3atà  1 .  LA= - /  

i 
neuron 'wiirner ; I '  Polntar CO t h e  neuron wrnnrnq the comgetrtron r<idag.ndac a f  conscrence ' 4  

i n t  nuiHeurons; 1' A count of tEe aumber of oeurons i n  t h e  Layer *f 

f l o a t  noniPactor: I *  ïretqht normlrzacton va lue  * I  

1 ; 
rypcdef s c ruc t  FSCLKLayerDaca PSCLKlayerOata: 

s t r u c t  ?SCUCnecwr*Data t *  NlZ'WRK -1 

[ 
fLoac aps l i on ;  :' Netwrk Les rn~nq  r a c e  * I  
f l o a c  fa tn i t s rFaccor :  :* C o n s t a t  decermipioq r a l r t ~ v e  s t ranqch of conrcrence - 1  

1; 
cygcdaf ocrucc ?SCLKnecwr)rDaca FSCtltPetuof -ta; 

vuid  F ~ l ; * & c t o r ( n t t w r k  *nec. da tasec  *cheDacascc, fnc vectorNumbsr); 
void  PçCIXasscmbleStrfags(aetriork *nec. char * t h a s t r i n a )  ; 
void  P ~ t A i q o r t ~ a r ~ e t e R s x c ( t n t  parameterSuaber. unsig'acd char 'ChsText): 

A32 ?SC& Algorithm Code (FSCLKx) 

* Tûfs  f t l e  conta ins  the  algorrchm s p c c i f i c  roucrnes  f o r  t h e  - s imula t ion of t he  FxL neural nacvork a lgor l thm.  I t  - concains no code spcc i f i c  CO che conscrucfton of t he  
* actuork  t c  r a l f .  I t  only provides t h e  funct ions  necesssry  
* f o r  Learning . Hetwrk construction rou t ine s  r e s t d c  i n  
* Che s1m.c i ndu le .  

* *  Thi s  funct ron perforais any i n l c i a l i t a t i o n  neceasary  when a 
* *  n a c w r k  d a t a  record f s  eteated. (Algorithm dependent) 
.* 
..**********.~*-****..****.*********.**t*************.**************.**./ 



- This functron performs any rn~craLiracLon necessary whea a 
O *  Laye? daca record is created. i&lporichn chpendencl 
.* 

" This function Derforma rny ~nlcializacron necessapl rhen a 
*' neuron Qta record rs creatad. iAlgoricbm ckpendeat) 

O *  ïhis tunctrcn performs my Lnit~altzatroa aeceisary when a 
* *  rynapse data record i e  creaceà. (Algorithm &pendent1 
*. 

/*.*.*.*******.....**~*.**.****--*******************.*.**.*****.*.*..***. - * FSCUc-teSunr . * 
O *  ~ h i n  funcrian &es the foruard propagation chrougi a netuork. 
" canputinq the total inout for each unie and decerntining the wraner 
**  for each layec. a i s  is pas 1 of che netvork ccaiputations. Lc 



" recurns the necwork error resulcrng trom chat apsracion. . . 
vold PSCUc~ceSirP.inatwfk 'net1 
I 
1ay.r 'layerptr; 
neuron 'nauronptr. 'WtnnerPcr; 
synapse =syaapse~cr: 
f lorc rocalInput. Laimess ; 

.* This funccion traverses the necvork and secs Che dcc;vationa of al1 
naurons t o  the appropriace values. Ic 1s csl iad afcer PSCtKcompuceSuas. 
This 1s pars 2 of tàe neevork coPputacions. . 

void P~updaceAccivaetonrlnetrork 'necl 
c 
layer ' LayerPtr; 
neuron *neuronPtr: 

laye?-r - nec-~Layers-wext: f *  S k i p  the firsc Layer sutce rc i s  che Laput Layer *I 
rhile {layerPtr!-t4UU.i   havers se Lay ers*^ 

f 
neUronPt? - LayerPCr-rneurons: 
while IneuroaPtr !- NUU) 1 .  Traverse neurons 'f 

( 
I* neuronPtr-wactivaeion - 0.0: 1 .  Clear old activaclona * I  

neuronpcr-~aetivation - (1.0 / ((FXLKneuronDaca *lnauronPCr-*cal-=cotaLInput 
1 (PSCI.Klayer0ata - 1  LayerPtr-2&acal -WnoriaP&ccor: 

neuronPtr - neuronlcr- mext : 
1 

/ *  (IPSCU1ayarl)rta .llayerPtr-*tal-~Fnner-+activation - 1 . 0 :  1' Set wtnner's 
layerPtr - LayerPtr-waxr : 
1 

1 

" Tâis funccion updates cha vaiqhcs for the winninp unir Ln each Layer. 



vord PSC~ugdacenerqhcstneNork *net) 
t 
Layer *LayerPcr : 
rynagse -synapoe~+r: 

void PSCUQEpochtntcvork *nec. datasec .caeDacareti 
t 
rnt Indu; 
neuron * theseuon : 
âacaelentenc *alement; 

/ *  Sec pointer CO the firrt input vector nchrn the datasec. 
element - theDaraset-data: 
nec-*errer 0.0; / *  Clear -ha natwork error. * /  
uhileIelœent !- mLL) I *  lrOply aach tnprir vector la curn. * I  

i n à u  - 0; 
theNeuran - net-*layers->neusons: 
uhilelcheNeuroa !- NUUI 1' Sec layer O * /  

t / *  acclvacions = I  

cheNeuron-,actlvstion - elment-~inputDatalindex*-1; / '  -1 Co Che ' /  

chcNeuroa - chsE3euron -+aaxc : / *  the input - 1  

i I *  vector. -I 

elesenc - element-~next: 
~~~tncompuce~uœs(ae~); 1' Coinpucd che ralghced suoa for each neuron. *! 
PXtltugdatsAccivatlons~nec): I *  Opdace al1 neuron activatrons at once. * I  

~f (!theNet-+batch) / *  f f  ueights are to be updaceâ in batch mode. -! 

PXLKupidceweightsintt): / *  then don'c do ic here. * t  
i 

tf ttheNet -+batch1 / *  Vpdate weightr here uhea ln bacch mode. * /  
PSCUCupdaceWelqhtatnet~: 

I 

* *  Applies the specrfled vucor aumber co the network and calls PSCuc~uceSurnrr a d  
* *  PSCLRupdaceActivacioni to accudly parforn the compucacloas. 
*. 

int index: 
neuron *:haNeuron ; 
dac&lemenc 'alement: 

/ *  Set pointer to the first input vcctor wlthin the dacaset 
eiament - cheDacaaet -data; 
index - O: 
whtletlndex+- !- v e c t o r ~ r l  / '  Locate the spccificd 

element - elaenc-,caxt: 
theNeUron - net-riayers-~neurons: 

- /  

input vector. */ 



vord P S C ~ e M g a r z c h a e ~ ~ e t a ~ a x t ( i n c  garametcrNunbar. unsrgned c h u  'theTextr 
( 

char *cheCTexc : 

- Rcsecs -y n e c w r k  parameters so Chat iesrriinq operaces tn the rame vay r t  vouLd 
- *  have i f  che n e c w r k  udl delececi  and an idencica l  necuork constructed. . . 



Soft Cornpetitive Leaming Souce Code 

SC1 Header File (SCL.h) 

Claymore --  SoLt Co5pccrtivc Learnrw Uqorrthm 

This  C i t e  con t a in s  t he  a l g o r i t h  s p u t f i c  headar information 
f o r  t h e  SCL neural  n e t w r k  algorichin. 

I *  AlqortchP Spec l f i c  Resouce Numbers * I  

rdef ine  r X u l g o r i c ~ e c t i a q s D i a 1 o g  134 

sc ruc t  SCLneuroDOsca NEUSEN - 1  

( 
f l o a t  cocrlKnput: 1' S m  of a11 rnguts co the neuron - 1  

f l o a t  ~ o t a L I n g u c :  / *  Expanencial of c o t a l ~ r i g u t  ' 1  
f l o a t  variance: !* Variance of the neurons RBt ' 1  

1 : 
t y p t d e f  s c ruc t  SCfmeuronDaca SCLneuroaData: 

r t r u c t  SCLsyudpseDaca 1 SYPUPSL 1 

( 
f l oac  r i i f ference;  1' Sto re s  t he  value luetght- input)  * /  
k ;  

typeàef s t r u c t  SaaympseOaca SCtrynapseData; 

s c ruc t  SCLlayerDaca 1' UYER O f  

[ 
Lnt numNeurons; 1' N u b e r  of neurons v i rh ln  ch i s  layer  
f l o a t  nomPaceor: l *  Tota l  of a l 1  urponentiat  values * /  
1: 

t y ~ c d e f  s c ruc t  SCLlayerDaca Xn*layerData: 

s t r u c t  SCLnetwrkData * I  

( 
f l oac  eps i lon:  1 .  N e w r k  learnlnq r a t e .  - /  

t l odc  vartance: 
f loac  i n l c i a l v u i a n c e ;  
f l o a t  varianceOacayFaccor; 
Zloat rarnimupvarrance : 
1: 

typedef s t r u c t  SCtnecworkilata SCtneturrrkûsta; 



inc XLinlcLayerDaca~Layer *cbet.yerl: 
tut XrtinicNauronData(neuzon *chsbteuron) : 
tac scLinicSyaapseDaca( synapse 'ChsSynapse 1: 
void S C ~ c ~ u c e S u m a  t necwrk *naci : 
void SCLupdaceActivacions inetwrk *nec. daraset -cheD.casec l : 
n i d  SCtUgdateweLghtslnetwock *nec): 
vold SCLdoLpoch(neCuork 'nec. dacaset *theD.tasecl; 
w t d  SCtaDglyVeccor (nccwrk *net. datuet -theDataret. rnt vectorNunbar 1 : 
w l d  XrasseableStringstnecwrk *net. chsr 'thestrimg): 

A42 SC1 Algorithm Code (SCLc) 

* This fila contsins the algorlchni specific roucrnes for che * 
* rimulacion ot Che SCL neural necuork algoricha. It 

concaias no code spectfic to ch8 construction of rhe 
aecuork tc self. Ir only provides the tunccions necessrry * 
for Learnfng. Necwrk conscructroa routines reside in 
che slm-c niodule.(~cad fram Xerton aource by Sue Beckeri 

....**--....*.*..*.***.*..***.-..***..****..**..**..***-.*.*....., 

- *  ~ h i s  funetion pcrforms any inicralitation necassary vhen r 
O *  necvork data record La creaced. (Alqorith~~ depeudencl . * 

......................................................................... 
" SCLiarcLdyerDaca 
**  

" This funccion perfornilr any inicializacion neceasary when a 
.* layar data record rs craated. (Alportthni dependant) . . 
..*..*.-..****.**..*.*..*.**.***o.*.*.****...*******..***.*.*..***-*.**., 



" This functtori p e r t o ~  any iaitirliratio~ nacessduy uhe8 a 
" neuron data record is creacuî. ialgoricbm d.paadencj 

O *  This functfon parforma any inxtrairtation necessary uhen a 
*. synapse data record Ls creatd. iAîgorithœ drpanckntl 
- 0  

" Titis function &es che forvard propagation ciuouqh a netvork. 
**  compucing Che tocal input for each unit aad determining Che winner 
.* for eacb layer. This is pass L of the necrork corgutations. It 

returns the netvork error rasulting from that oparacian. 
.* 
.*****.-*****.****.. ..................................................... 

voici SCLcompuceSumn t n e t h  *nec) 
( 
Layer *LayerPtr: 
neuron .neuronPtr; 
synapse -qnapsePtr; 
float tocdlInpuc: 

LayerPtr - nec-slayers: 
A l L e  i LayerPtr !- NUUi 1 -  Traverse Che Layers *! 

f 
((SCLLayerData *)LayerPtr-&ta)-*nornPaetor - 0.0: 
neuronPtr - LayerPtr-zneuro~=; 
vhrle tneuronptr !- NtTtL) 1 -  Traverse t h e  neurons ' 4  

( 
if ( !  ineuronPcr-bLockl I 

f 
cotalInput - 0.0: 
synapseptr - neuronPtr-asynagseIn: 
while rsynapseptr !- NUUJ 

t 
i t XltrynaDaeData * )rynapsePtr-dacal -d f terence - 

aynapiePtr-weiphc - rynagaePtr- neu ut on In-wactfvationi 
tocalInput -- q u e  ( ( (-apseaata ) syuapsepcr -xlatai -&f ference) ; 
synapaeptr - rynapseetr--nucIn; 
1 

i (XLueuronData 'lneuroeetr-&cal-)totalInput - totslinpuc: 
i (XLneurOUData * l n e u r o n P t r - z d a t a l - ~ ~ o t a 1 I n p u c  - 

a-(- cocalInput/(2,0~((SCtaturoaData -)neurooPtr--ta)--variancerI: 
((XLlayerData -11ayerPtr-&ta)-*noWaccor 9- IiSCLneuronData *lneuronPtr-+data)- 

wqYTota1 Input; 
l 



l'!ais functioa traverses the necwork .nd secs cite activations of dl 
'* neurons CO the agpropriate values. Lc is called after COMDUC~SU~S. 
" This is paso 2 af tâe netwrk coopucations. 
.O 

vord sCLupd.tcAccFvattonsinetwork *net. dataset -theDataset) 
[ 
Layer 'LayerPcr: 
neuron *neuronPtr: 

This fu~ction updaces the weiqher for the wiantag unit in each Layer. 
0 

*...*. ....*.~..***--*..~..*.~-~*-.*......*~~**.-.****-***.***.-.-...*.../ 

layerPtr - net-~layers-wnexc: 
riiile (LayerPtr ! -  HULt) 1 -  Traverse layers ' 1  

( 
neuronPtr - LayerPtr-wzeurons: 
while IneuronPtt !- NULL) / O  'Praverse neurons * I  

[ 
ryaagsePtr - neuronPtr-*synapse1 n; 
vhile I ~ s e P t r  !- m l  1 -  Traverse syMOaes ' I  

( 
synagsePtr-mighc -- ((XTLnetuorltData *)nec-&ta]-)epsilon ' neuronPtr-'activaclon ' 

tiXltoynapseDaca -)synapscPtr-&ta)-4Eference; 
PynapsePcr - synapsePtr->nexcIn; 
t 

aeuronptr - nauronptr-waext: 
1 

LayerPtr - LayerPtr--next: 
t 

- -  Appllas che se+ of input patterns CO Che network and calls SCLcamputeSums. 
" SCLup&teActivacions anâ ScLugdateWeiqhts to prrform the ledrning. . 0 

void XUioEpachtnetmrk *nec. àacaset -theDacaset) 



f *  sac pointer to che firsc rnpuc vactor vichrn cba datasac. * I  

clament - theorcasec-+data; 
nec-=errer - O. O: C l e u  the aarwrk esror- * /  
*hiLalal.asnt !- N U U I  / *  Apply sach rrigut vector in c m .  - /  

1 
L n d u -  O: 
chmeuron - net-~Layers-rneurons: 
uhilelthmNeuron !- AtlLLJ :* Set layer O ' /  

f i *  activat~ons 
UteNeuron-*acttvafion - elanent-~tnpucData[i&ax++l; / *  aquai co che 
UteMeuron - CheEleuron - wnext ; ;* cha rnpuc 
1 I veccor . - 1  

elamenc - alement-wnext: 

vord SttapplyVactarinatwork *nec. dacaset gtheDICaset. LnC vecto-rJ 
1 

1nt indu: 
neuon *cheNauron: 
dataElamant *ekmanc; 

I *  Sat pointer co cha first inpuc veccor wichin cha daCasec. 
clament - theDlc~ec-.dace; 
f n & x  a; 
vhile(lnd&x** !- veccorNumber) I *  Locace cha spacifled input vector. - 1  

alement - elamenc-+nax<i; 
thaNeuron - net- rlayera-rneuroas : 
inda* - 0: 
whileltheNeuron !- NULt) I *  Set layer O - 1  

( 1 .  accivacions * t  
thdiSauron-~acclvacion - elwent-~ingutData[tndt*++li 1 .  aquai to cha * I  

thelueuron - cheNeuron-xmxt : 1' the input - 1  

1 / *  veccor. - 1  

çCLcompucaSuma (nec I : / *  Coaapuced Che vtlghtad suma for each aauroa. - I  

SCLugdataActivationstnac. EheDatasacl; Opdate al1 nauron activacians ac once. '1 



......................................................................... 
*. SCtassembLeStrings 
**  

Princs the rlqorla specrflc vulaùles :O a scrrng and recurru chat strtop for dlsglay. 
-1 ......................................................................... 

vold ~sembLcStrinqs~necuork -net. chat *LheScrlngl 
t 

Lf (net !- Mntl 
sprincflthestrinp. -softcompec~t~va Learnrnq\r\rLu&lilnq Rate tepr:lonl = tf\r~nlc~al '3dr:ance - bf\rVuraace Dacay Factor - af\rntnrprmi VariaIlCe - af\r\?V&riance - &f\r-. 

((SCtnecrorIL)rta -inet-&cal-)ep~lioa. IiXLattwrkLlata ~ l n e t - & t a I - ~ ~ n ~ t r a i ~ a r ~ a n c e .  

O *  Prlats Che alqorichm spcefflc variables cc a scrinq and teturns chat strinq for dfsplay . . ......................................................................... 

rlon - atof 

break: 
c&ae kSCL%îgo ri thmVarlanccDaCay : 

itSnnecwr*Data -1thcN4c-&cal-~varL~ceDacayPactor - atof(thflext1; 
break; 

case kSCLhlgortthmlUnimumVariance : 
i ( SC~networhta - ) t h e t  -&ta) -a~ntmunivariance - &of (thcCTexr 1 ; 
break; 

I 

......................................................................... 
" çCU;aMgori ChmParaaeteiPuc 
.O 

" Prtacs che algorithm -ific variables to a strrnq and recurns chat $tri- for display. 
.* ......**........*...... ..**......**.........******...**-1*..*...***....., 

data I 



case ~ g o r i ~ P i t l a l v a r t a n c e  : 

sprintftichat -1theTarc. -\f-. i 
bredc: 

c u e  *9CWgoritimVuiancemcay : 

sprtncfltchar *)theTaxt. '\f*. t 
break: 

c u e  *SCLAlgorithmU.inîmmaVarxb~ce : 
sprtnefi(char *ltheTexc. -\f-. i 

break: 
1 

c2pstr i [char )theT~~t 1 : 
i 



Support Hardware and Source Code 

0.1.1 Cirait Diagram 



6.1 1 Stepper Conttdler Arsembly Code 

: ProgrAm Co conta1 a pair of seapgar aocors 
: baseci an  control  inforaiacion ruppl iad by 
: a Haady8oard 

: Cwuuuaicatioa Lrom the Hm&ysoaxd is rec~Lvad  
: through PORTB. H.ndyBolrd e t c e s  sa 8 b i t  value  
: to a daCa lacch on WRTB LJdicrcing che 3 b i t  
: wtd aad diracclon of e i ch  =cor. 

: Output t o  che w c o r s  t a  aezf;-sad t h roy i i  
. r h t c h  providaa d r ive  t o  the  motors v t a  a 
: W l t n q t o n  t r a n s i s t o r  arrangement. 

proceasor 16CS5: sac  procesaor type 

colutdnt  gorca - 0x5 
conscdnt porcb - 0x6 
Coiutdnt parcc 0x7 
constant  - art 
C O n i t M t  STANS - O x i  

coaacdnc speedrag - UxlP 
COMCaDt s p e d  - OxlE 
conr tsnc  spmedr - Oxll) 
constant  c o u n c ~  - oxlc 
conrcant couner - OXLB 
conscuic d r ive l  - O U  
consesnt d r tve r  - 0x19 
coascanc -al - Oxl9 
conscanc camp - oxor 
constant  d i r l  - Orl 
constant  dz r r  - 0x7 

-ART ORG 0x00 
C'Law 
TRIS par t c  
HOW porta. O 
W t W  0x7 
OPTION 

Or03 
dr ive l  
0x3 0 
dr ive r  
weedrag 
s O a d  
~pc.dr 

; Configure PO= ar outpui: 
; Load the  counter  p re sca l e  value 
; Ofscarà unusmi b i ca  
: toad the OPTI(Ti r a g i s t e r  
: Load W with l e f t  w t o r  d r ive  pacteru 
: I n i c i a l l z e  Left d r ive  paccarn 
; Load w v i c h  r ighc  w c o r  d r i v e  prrcern 
: I n i c i a l t z e  r f q h t  d r i v e  pdcrern 
: I n i t i a l i z e  rpad  t o  zero 

; Get the  curranc speed from the HB 
: Teac ~t -cd a s  t h e  sane AS before 

: I f  the  saine. goto d r ive  rou t ine  
: L o a d  the  n a  -ad value 
; Sto re  the  value  Ln RAn 

; Save che r iqhc motor spead aeparaccly 
; L o d  the  cooplanianc of speed 

; Lnrcis l rza  l e f t  countdoun couacer 

; Lmera l i ze  r ighc  cowicdovn counter 

; Laad l a sc  c e  sca red  rimer vaLuc 
; Sto re  it in  rlmer Location 
; Cec che curranc t imer  va lue  
: Save curranc cimer value i n  c e m ~  Locacron 
; L o d  o ld  tLmer va lue  
; Subcracc o ld  t imer  value from neu value 
; I f  r e su l c  ncgatFve timer bas ro l l cd  over 
: If  t imer hasa'c rol lad .  loop 



w . 1  
STAWS . 2 
ClIEClLR 
:ount 1.1 
FFAWS .2 
LSTUI 
C O U n C l .  1 
CH- 
d r i v e l  . O 
* e r g  
LBAcn 
driv.1. L 
d r r v e l .  O 
d r i v e 1  .a  
d r i v e l  . O  
c m  
d r i v e l .  1 
STA'!US. O 
d r r v e l .  J 
0x0 t 
driv.1. L 
r p a a .  O 
0x7 
eount 1 

w . . 
SL;~POR~ HAIU>WAEE AND SOURCE CODE . 

w 

: Lord the speai v a l u e  Co ugd.ce zero  bxt  
: T e s t  Ff specd is zero  
: I f  z e r o  qo  ou Co r r q h t  nocor c o n t r o l  
: L o d  the councer  co usdace zero brc 
; Tesc i f  c o u n t e r  is zero 
; I f  z e r o  1- c o  Lef t  s c r a u l u s  @ t e  
: Decriment Che l e f t  speed c o w c e r  
; S k î p  CO m e  o t h e r  mocor rouctne  
: L o d  the c u r r e n c  drive p a t t e r n  

.&rl ; C h u k  i f  L e f t  1s w v i n g  f o ~ & r d  o r  b.ck 
: Zf n o t  forvsrd do àacùwa~d 
; S h i f t  t h e  d r i v e  s t i m u l u s  l e f c  
: Zero Che s h i f r e d  ra b i t  ]USE Ln c a s e  
; Check Lf 1 a h i f t e d  o u t  of Louer a r h b l e  
: I f  L s h i f t ç d  out .  s e t  lm b t c  CO L 

: S h i f t  the d r i v e  scr rmlru  r i q ü t  
; Check i f  1 s h i f c e d  out  of I w a r  n:bble 
: I f  L ahi f tec l  ouc. s e c  high b i t  CO L 
: Iasd W w i t h  irabk 00OOLlll 
: AOpLy che maak t o  che l e f c  d r t v e  v a l u t  

: Resec che l e f t  councer 

wedr . 1 ; Iaad t h e  spaed v a l u e  CO updare zero b i t  
STAIVS .2 : T e s t  i f  spmd is zero 
ST I m W r  ; L f  zero .  skip CO o u c ~ t  rour tne  
councr . 1 : L o a d  che councer  t o  updace zero b i t  
rPATVS. 2 ; Tesc i f  councer r s  zero  
RSPIX : t f  z e r o  jrrmp co r i g h t  scimxlus -ce 
countr.  1 ; DscrLaianc t h e  r t q h t  speed counter  
SPIllOVP 
d r i v e r .  0 
~ a d r e g . à i r r  : Check i f  r i g h t  is movtnq f o n a r d  o r  back 
RBAClt ; I f  n o t  f a r u a r d  do b a c h a r d  
d r i v e r .  L : s h i  f t  che d r i v e  setmuiua Left  
SPAIVS . O : check i f  1 s h i f c e d  ouc o t  upper n l h b l e  
d r i v e r .  4 ; I f  L s h i f t e d  o u t .  sec low b i t  co 1 
CIJ%m 
d r i v e r .  L ; S h r f t  che d r i v e  s t i s u l s  r ighc  
d r i v e r .  7 : z e r o  c h  s h i f c e d  i n  b i t  f u s c  i n  c a s e  
dr tver .3  ; Check i f  1 s h i f r e d  o u t  of uppcr n i b b l e  
d r i v e r .  7 : I f  L a h i f t e d  o u t .  s e c  hiqh b i t  CO 1 
0-0 ; ~ a a d  Y rFth mask LllLOOOO 
d r i v e r .  1 : AppLy t h e  mrak Co t h e  r l g h t  d r t v e  v a l u e  
aPeedr.0 
0x7 
coun t r ; ~ e s e c  t h e  r i g h c  eounter  

d r i v e l ,  0 : u a d  che  l e f c  sc imulus  v a l u e  
d r i v e r .  0 ; Add t h e  r i g h t  s t i m u i s  v a l u e  
m r t c  : Oucpuc t h e  neu drive sclimiLu6 
CmCR ; Co back t o  Che start 

end 



82.2 Ught Board Assembty Code 

: Lighc panel controller 

; This program re& Lnguc €rom a serra1 
: line at 2400 baud and scores the received 
; data LU Local msinory. dnce the data h a s  
: been read Ln. tt Ls dlsplayed on the llghr 
: panel oucputs in a cyclical fashion. 

proceasor L6C74; Set procesior type. 

: define some consranrs Co make the code more 
; readable. 

conscanr C - O 
constant TOIF - 2 
constant a G i f  2 
constant z - 2 
conataac ÇYNC - 4 
conscaac m e  - 4 
constant rXfP - 4 
conacant CREN 4 
constant D N a m  - 5 
constant RCIE - 5 



ClMCanC RCIF - 5 
COMCanC TX89 1 6 
constant RC89 - 6 
COMtaat SPmJ - 7 
C O M t a t  G I E  - 7 
coo.tdac M D F  - 0x00 
c o n s t a t  SPAIUS - 0x03 
c o n s t a t  PSR - 0x04 
COluCanC PORTA - 0x05 
COMCant PORTS - 0x06 
constant  WR'X - 0x07 
constant m m  - 0x08 
COMtaat WUTE - 9x09 
C O M t a i l t  SWXOU - OxOB 
constant  P I R I  oxoc 
coastaat  TIC- - 0-0 
COMCanC 0mEt - 0x01 
conscanc ~ R I U  - 0x85 
constanc TRISB - 0x86 
constant  TRI% - 0x87 
COP.tAUC 'PRISD - 0x88 
COMtdPt TRISE - 0x09 
constant RCSFATUS - 0x18 
constant rXRDt - 0x19 
C O D . t U t  RCREÇ - O x U  
cocucaoc MCON0 - OxrF 
COMC~C PIEL - Ox8C 
COUsCant fXSPATtJS - 0x90 
cocucant SPBRG - 0x99 
COMtaIïC - 0x9P 

conscaac w-rntp - 0x20 : Mdy a l s o  be AO. &cglading on FFANS 
. d e n  Incerrugt  LS reccived. 

conscanc s ~ ~ r c ~ s - m r r ~  - U-1 
constanc NUHPATS - 0x22 ; mnber  of p a t t e r n s  s t a r a d .  
constant PAXCUUC - 0x23 ; C u r e n t  p a t t e r n  berng btsplayad. 
CO-tut -1 - O%24 : Tamporary r to rage  . 
conscanr -2 - Or25 : Tanporary s to raqe .  
constant SPeED - 0Xz6 
conrCant ÇCOUKP - 0x27 
COMCanC PSKPE)B - OxAl 
coascanc RCPPR- 0- ; Pt r  CO ne%= d&àr f o r  pa t t e rn  s torsqe 
con8cdxX R û U l T D B  - OxCJ 
conrCanC R M T e X P  - OxA4 
COMCanC ROW3TEIiIP - o + M  
Constant R-4- - OxA6 
cOxl~tant RCUS- - 0-7 

ORG 
m 

BSP 
CLRP 
CLRP 
CLRP 
CLRP 
iOVLu 
mvw? 
mVLw 
m'me 

: Ins ra i l  tn terrupt  handler vec to r .  

; O *  INITfAtfZE WRT DIRECPfONS .* 
: Selecc Eunk 1. 
: Coafigure PORTA as oucpucs. 
: Confiqure PORTB as outpucs. 
: Configure WRTD as oucputs. 
: C o n f i v u  WRTE a s  outputs .  

: Confiqure W#PC as outpucs Luccpc TX i, RCI. 
: L o d  Analog Part  configuratron b i t  puctern. 
: Set a i l  A/D p o r t s  Co d f g t t a l  I I 0  

: Load TMRO configurat ion vaiue.  
: Store configuration b i t s  f o r  = O .  

- * *  . WXTIAUZE SERIAL PORT " 
; L o d  value for Baud Rate Caneracor. 
: Set 8.d Race Cenarator a t  2400 baud. 
: C l e u  high baud r a t e  b i t  and enable  aquc mode. 
; Select  Bank O.  
: Endbla s e r i a l  p a r t  fo r  r e c e i p t  o f  8 b i t  -or&. 

; Select  Bank 1. 
; Enable c r a n d t  t n t e r r u p t s .  



DISPLAY BC? 
BF?SC 
Gom 
now 
BTPSC 
GOm 
BSP 
ravt 
KlVliR 
m p s s  
cOPo 
BSP 
GOTO 

s a o  ecr 
DXSPST KM 

mvu? 
mss 
Gwm 
BSP 
con> 

PU( BCP 
WHEZ er? 

mw 
m 
XNC? 
nmr? 
nDVVP 
mce 
mv? 
lmme 
ENCP 
msc 
eCrro 
W S S  
wm 
KlVLW 
mwr 

rrSFEND BCP 
INCF 
lQVV 
SUBYP 
mess 
m 
CLRP 
KIVUI 
m'MF 

UVfPSR llDVl 
BSP 
EdDtnrP 

-LEI BSP 
BSP 

WAIT lQVP 
mss 
au. 
BRSS 
m 
BCP 

-.CIE 
m . G I E  
DISPLAY 
HUWPATS . P 
STArnS . z 
ENABLEI 
STArnS. 3ANKEl 
PSRTRCP.W 
FSR 
PsRTmtP. 7 
SEL0 
SL'ATüS . BANI(B 

DISPST 
fPArnS.mum 
m r . w  
PORTA 
LPIOP. 4 
PXX 
PORTC.4 
LINE2 
mRTc. 4 
PSR. F 
INDP.W 
WRTB 
PSR. F 
m P . W  
PORTD 
PSR. P 
K2mP.W 
PORTE 
?SR.P 
STAmS. 
rEsTm'0 
PSR. 7 
-msTQm 
OxA8 
PSR 
STArnS. BAMCB 
OATCOCEHP. r 
PA-rcamc. W 
NUXPATS . W 
STA'IUS . z 
UVerSR 
PATcMRTr 
03Qe 
PSR 
PSR.W 
SPARIS. BAMCB 
P S R T n f P  
STATUS . BANW 
IHLCON.GIE 
RCPm . P 
STARIS . z 
CWIç4PAT 
LHECON.TOIF 
YAlT 
m c o c a . r a x P  

I 

I 

!~TPORT HARDWARE LVD SOURCE CODE : 
O 

; C l e u  a l 1  incer tupt  a&Le b i t s .  
: EuabLe recetve  interrrrpts.  

. " INïT iAUZL PA- PO- AND m S  *' 
: Parnt the next pa t t e rn  goincar t a  neart ?f t ab l e .  
; Parnt na r  pa t t e rn  icorage pointer  CO s ~ r t  of Cdble. 
: Clear che neu patcarn campor- r torage LocacLon. 

; Select Bank O. 
; Zero nrnibcr of patte- value 
: Zero pa t t e rn  coune. 
; Zero speeà eounter targer .  
: C l a u  the oucpucs. 

: Nm off A/D converter.  s rnce  r e  don'c necd L t .  

; Endbla global  and per tpheral  rn t e r rup t s .  

: Dirable Global Interrupc f lag .  
: &mura f i 4  uaa ciearrd .  
: r f  noc c leared.  cry  aqaln. 
; touch pa t t e rn  count Co perairt zero t e s t .  
: Pest rf pa t t e rn  count not zaro .  
: If zaro skip co end of d iaplay roucine. 
: Select Bank 1. 
; Lodd the r t o r e d  PSR value. 
: Score P5R f o r  indirect  addresr iag.  
; Check i f  PSR rn ûank 0 o r  Bank L. 
: ff PSP ~ a n k  O sk ip  t o  eank 0 s e l e c t -  
; Select Bank L. 
; Beqia à isplayiag the  gactern .  
; Salect Bank O .  
: Redd memory poincad co by ?SR. 
: Score f i r s t  Ltne in  PORTA. 
: Tast i f  b i t  4 LS s e t .  

: Ladd next Lzne. 
; Score secondl t h r rd  l i n e  in  PORTB. 

; tod naxt l l n e .  
: Score t h i n i l  four th  l l n e  Ln WRTD. 

: Lad last  l l n e  frdqmanc. 
: Store Lasr p a r t  of l i n e  four.  

: Set ~f w e  are Ln BankO. 

: Test rf PSR haa hic  tha end of Bank O .  

: Lodà base pa t t e rn  addresa f o r  Bank l .  
; Store naw PSR valua. 
: Select  Bank 0 .  
: Incriment t h e  current  pa t t e rn  number. 
: Gec c u r e n t  pa t t e rn  nuutber. 
: Subtract currenc pac num f roa  coca1 pa t t e rns .  
; Tesc i f  curranc pat tern  - l a c  pat tern .  
: I f  not a t  lut pat tern .  save current  PSR. 
: iteret pa t t e rn  c o u c e t  CO zero. 
: Load f l r s t  pa t t e rn  dddresa Fnto W .  
: Store neu valua in  PSR r a q i s t i r .  
: C e t  tha e u r e n t  value o f  ?SR. 
: Select  Burk 1. 
: Save L t  f o r  Latar use. 
: Select  Bank L. 
: Ra-anabla Global fncerrupc f1.g. 
: Touch receive paintar  t o  update f l a p i .  
: r e s r  i f  receive  pointer  zero 
: If !zero. cabla has rom.  Check fo r  a m  pat tern .  
: Tesc Ff T?ïRO ha8 overflowa. 
: Xf not overtlovn. wait.  
: C l e u  overf lau f l ag  f o r  -1. 





W-RC BCP 
BC? 
KnrP 
lDVWP 
m m  
WOVWP 
SWAPF 
BCF 
RRP 
KNLW 
SUBlR 
BTPSS 
GOTO 
mss 
COTO 
rn 
m w  
KIVWV 
RmVRN 

r l?sccLR mvI.u 
mRn 
m s s  
Wm 
cLRt 
CtAP 
MVLW 
BS? 
eaVWP 
IUnuP 
CLRP 
CtRP 
CLRF 

FPATVS . aANlLB 
RCRDG.W 
Ox2C 
PIRl. W 
TUPL 
' T P I P 1 . W  
O d L  
PIR1. RCI? 

; Score p a r t  pat tern  i n  f i n a l  locacion. 
: Incrcnerit t ab l e  rcorage Location g o i n t e r .  
: Incrument taagordry porc pa t t e rn  po tnce r -  
: L o d  rad address of pa t t e rn  array - 1. 
: sub t r ac t  c u r e n t  m e s s  f r a ~  end address .  
; rf carry s e t .  end w a r  reaciied so  c o n  L s  done. 
: Kf noc &ne ?xaasfer nexc porc paccern. 
: C h a r  rot# 5 pactarn Location. 
; Se lec t  Bank O .  
: Kncrwmant numbar af scored g a t t e r a s .  
: Re -enabLe plabal  Lnterrupcs . 
: s e l e c t  Bank 1. 
: L o d  Bsnk O rollover value .  
: Subcracc r t  f r o ~  t ab l e  s to raqe  locacion p a i n t e r .  
: I f  ao t  zero *a haven't ro l l cd  over. 

; ~ o a d  Bank L base adidress. 
; Store  value fo r  proper s toraqe of n e t  pa t t e rn .  

; " fKPERRmKu!mt)31"  
: Save W value ( M y  be h k  O o r  L I .  
: Su- EPATPS in to  u CO avotd modification. 
: Svitcit CO BMIlC O .  
r Save (nappedl nATU.5 value!. 
: Check L f  Lnter-t bue t o  w t y  TX Req. 
; Brdnch CO c r a n s u c  rout ine .  
: Check r f  tncerrupt Qe CO data  rn RC Rag. 
: Branch CO racerva rout ine .  
: =sure w are in ~ s n k  0 .  
: Sw- o r t g t n a l  STANS in to  W. 
; Restore orrqindl STATUS r aq t sce r  va lue .  
r Sww U - r n  (no a& t i  cacion CO STATVSI . 
: Svap o r i g i n a l  W vdlue i n t a  W r ag l sce r .  
: Recurn from incerrugc. 

: Se lec t  Bsak O .  

: Se lec t  Bank O .  
: C h a r  Che incercupc f l aq .  
: t a c  t he  received vord. 
: s t o r e  vord i n  tanp. Loc. CO parnue cases .  
: Discard alL buc chrae W s .  
; Store  cha chree WSB.. 
: Swap Lw and hipb a lbb le .  
; C l e u  Che C a m  Bic. 
: Rocate t he  tw regincar r i gh t  1 b i t .  

r Subtract  5 from three X58s of receivcd -rd. 
: If C a r r y  t s  sec. va have a control  word. 
: ocherwtse nS8s are da ta  indur valuea .  
: I f  Zero b i t  v u  sec. concrol is med. 
: I f  not  rpced c m d .  e l e a r  c m ?  
: L o d  r e c e i v d  uord. 
; Discard controL bi ts .  
: Save speed value. 

; toad m s k .  
: And m&sk and c m  b i t s .  
: I f  r a s u l t  noc zero. l n t ens i ty  c0mmu.i. 

: Sec artmbar of pat terns  t o  zero. 
; Sec next pa t t e rn  CO d i sp l ay  CO zero .  
; Laad t a b l e  baae address.  
: M t c h  t o  Buik 1.  
: Set  acv pa t t e rn  rtorage poiacer CO base  add te r s .  
: Sec pa t t e rn  display po in t e r  co base address .  
: Clcar  any p a r t i d l y  raceived p a t t e r n .  



; suitch CO ~ a n k  a. 
: C l e a r  the output parts CO c leu  board. 

; Can'c sinply clear Port C k a u s e  it cancrols RC coo. 

; L o d  -k. 
: n l s c a d  cop artable. 
: sec bic for sarial Rx pin (RCII. 
: Lodü incensity pattern rata W. 
; Select Bank 1. 
; Score nau intenaity Ivaa POUTCI. 

: Lad N rrch temporary rcoraga barre address 
: Add che pactern n-r ro base address. 
: P r W e  of indirecc .ddrersrng. 
: L o d  ortgiarl received value. 
: Scrip three MSBs icontrol/ L n d u  b i t s )  . 
: Set the chree HSBs of che - xtern .  
; svicch ta Bank 1. 
: score the value. 
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